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Theoretical Approaches to Quantum Cryptography

In a cryptographic protocol, two or more parties perform an information-processing task in the
presence of adversaries who are trying to gain some advantage relative to the honest parties.
Roughly speaking, we say that the protocol is secure if it is infeasible for the adversaries to
achieve their objective. In many cases, the honest parties want to prevent the adversaries from
acquiring private information. For example, Alice might wish to send a secret to Bob, without
allowing the eavesdropper Eve to learn the secret; the communication is secure if the probabil-
ity is negligible that Eve can learn more than a negligible part of the secret.

A central goal of modern classical cryptography is to devise protocols that are computationally
secure. This means that the security is founded on an (unproven) assumption that a certain
computation that would break the protocol is too hard for the adversary to execute. Thus, even
though a computationally secure protocol may be invulnerable to the strongest attacks that are
currently foreseen, the discovery of a better classical algorithm could threaten its security. Fur-
thermore many protocols that are believed to be secure against attacks by classical computers
are known to be vulnerable to quantum attacks. Therefore, if and when quantum computers
become readily available, much of classical cryptography will be obsolete.

A major goal of quantum cryptography is to devise protocols, involving the exchange of quan-
tum states, that are information-theoretically secure. This means that the security is maintained
even if the adversary has unlimited computational power. The most celebrated achievement in
quantum cryptography is the formulation of quantum protocols for key distribution that are
provably secure information theoretically. There are also some important negative results, most
notably that information-theoretically secure bit commitment is impossible even in the quantum
world.

In this section of the quantum cryptography roadmap, we review the current status of research
on the information-theoretic security of quantum key distribution (QKD). We also discuss
briefly some other aspects of theoretical research on quantum cryptography, pointing out some
noteworthy recent advances and some important remaining challenges.

A. Quantum Key Distribution

The purpose of QKD is to establish a string of random bits (the “key”) shared by Alice and Bob,
where Alice and Bob can be highly confident that eavesdropper Eve knows almost nothing
about the key. Then the key can be used by Alice and Bob as a one-time pad for enciphering and
deciphering a message. Because the key is random and unknown by Eve, she can’t learn any-
thing about the message by intercepting the ciphertext.

The promise of quantum cryptography was first glimpsed by Stephen Wiesner,![1] who pro-
posed a quantum realization of unforgeable bank notes in the early 1970s. A decade later,
Charles Bennett and Gilles Brassard![2] proposed the first QKD scheme, which was published in
1984 and became known as the “BB84” protocol. In BB84, Alice repeatedly sends to Bob one of
four possible states of a qubit, and Bob measures each signal in one of two complementary
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bases. This protocol was reinvented a few years later by Douglas Wiedemann,![3] who was
unaware at the time of the work of Bennett and Brassard.

In 1990, Artur Ekert, also initially unaware of the earlier work, began developing a different
approach to quantum cryptography that ultimately proved very fruitful. Ekert proposed a key-
distribution protocol![4] in which entangled pairs of qubits are distributed to Alice and Bob,
who then extract key bits by measuring their qubits. Bennett, Brassard, and Mermin![5] then
noted that a simplified version of entanglement-based QKD can be cast in a form closely resem-
bling BB84, where each party measures the qubit in one of two complementary bases. Many
other variations on QKD were proposed later, such as
ß a “six-state protocol”![6], in which Alice sends each qubit in one of six possible states;
ß Bennett’s B92 protocol![7], in which Alice sends one of two nonorthogonal states;
ß the “time-reversed” EPR protocol![8], in which Alice and Bob send the BB84 states to a cen-

tral switching station (where their shared key is established via an entangled measurement);
and

ß protocols using continuous quantum variables![9], in which Alice sends a squeezed state or
a coherent state of a harmonic oscillator.

In their original paper and in subsequent work with other collaborators![10], Bennett and Bras-
sard analyzed “individual” attacks on BB84, in which Eve attacks the quantum signals one at a
time. However, a complete proof of information-theoretic security is more challenging. In prin-
ciple, Eve could attack all of the signals sent by Alice to Bob collectively, entangling the qubits
with an ancilla that she controls. Eve could then monitor the public classical communication
between Alice and Bob, in which they reveal their basis choices and exchange further informa-
tion to correct errors in their shared key and to amplify its privacy. The information Eve learns
from this public discussion might help her decide how to measure her ancilla to optimize her
information about the key.

New techniques for analyzing collective attacks by the eavesdropper were developed by
Andrew Yao![11] in 1995, and the first complete proof of information-theoretic security for BB84
was obtained by Dominic Mayers![12] in 1996. Around the same time, Bennett, Brassard, Pope-
scu, Schumacher, Smolin, and Wootters![13] discovered that noisy quantum entanglement can
be distilled, and Deutsch, Ekert, Jozsa, Macchiavello, Popescu, and Sanpera![14] noted that if
Alice and Bob have reliable quantum computers, they can use an entanglement-distillation
protocol to achieve a secure version of entanglement-based key distribution. This observation
was developed into a formal proof of security by Lo and Chau![15] in 1998. The approaches of
Mayers and of Lo and Chau were united in 2000 by Shor and Preskill,![16] who showed that
entanglement distillation can be invoked to formulate a relatively simple proof of the security of
the original BB84 protocol.

The Shor-Preskill analysis relies on the idea that Alice and Bob could use a quantum error-
correcting code to prevent Eve from becoming entangled with the protected qubits that are used
to generate the key. Furthermore, this code can be chosen to have the property that bit-flip error
correction and phase error correction can be performed separately. However, for the final key to
be private, it is not necessary to actually perform the phase error correction—it is enough to
know, based on the verification test included in the protocol, that phase error correction would
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have succeeded if it had been done. By this reasoning based on virtual quantum error correction, a
protocol invoking quantum error correction reduces to BB84 augmented by classical error cor-
rection and classical privacy amplification, which is therefore provably secure against any pos-
sible eavesdropping strategy.

Another novel approach to proving the security of BB84 (long in gestation but still unpublished)
has been pursued by Ben-Or![17]. In Ben-Or’s proof, one uses the results of the verification test
to infer that the quantum state of Eve’s ancilla is highly compressible. Then results regarding
the quantum-communication complexity of the binary inner product function are cited to
establish that Eve cannot possibly have enough information to compute the final key generated
by Alice and Bob. Quite different technical tools were developed by Biham, Boyer, Boykin, Mor,
and Roychowdhury![18], who were the first after Mayers to obtain a complete proof of security.

The formal security proofs establish that, if the bit error rate (BER), d, observed in the verifica-
tion test is low enough, then the secure final key can be extracted from the sifted key at a
nonzero asymptotic rate. For example, in the case where error correction and privacy amplifi-
cation are carried out using only one-way communication from Alice to Bob, the ratio of the
length k of the final key (after error correction and privacy amplification) to the length n of the
sifted key satisfies

R = limnÆ• k/n ≥ 1-2H2(d), (Equation A-1)

where H2(d)!=!-d log2d!-!(1-d)log2(1-d) is the binary Shannon entropy function. Hence, secure key
exchange can be achieved for any d!<!11%. The proof shows the following: Suppose Eve uses a
strategy that passes the verification test with a probability that is not exponentially small. For
any such attack by Eve, if the verification test succeeds then Alice and Bob agree with high
probability on a final key that is nearly uniformly distributed, and Eve’s information about the
final key is exponentially small. Here “exponentially small” means bounded above by (e-Ck)
where k is the length of the final key and C is a positive constant, “high probability” means
exponentially close to 1, and “nearly uniformly distributed” means exponentially close to a uni-
form distribution. Informally, for any attack, either Alice and Bob are almost certain to catch
Eve, or else Eve knows almost nothing about the final key.

The Shor-Preskill method was adapted by Lo![19] to prove the security of the six-state protocol
for BERs up to 12.7%, and by Tamaki, Koashi, and Imoto![20] to prove the security of B92. Got-
tesman and Lo![21] have shown that if Alice and Bob use two-way communication to correct
errors and amplify privacy, then secure key distribution is still possible in BB84 for BERs up to
18.9%, and in the six-state protocol for BERs up to 26.4%. On the other hand, it is known that
information-theoretically secure key distribution is impossible if the BER is above 25% in BB84
or 33% in the six-state protocol—these are the error rates that arise if Eve measures each signal
in a randomly selected basis and then sends onto Bob the state resulting from her measurement
(“intercept/resend attack”). If Alice and Bob are limited to one-way communication, then
secure key distribution is impossible if the BER is above 14.6% in BB84 or 16.7% in the six-state
protocol—these are the error rates that arise if an optimal approximate cloner diverts to Eve a
state identical to that received by Bob. It is an interesting challenge to close the gaps between
the best known upper and lower bounds on the BER.
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The Shor-Preskill method was also applied by Gottesman and Preskill![22] to a continuous-vari-
able key-distribution protocol, in which Alice sends a squeezed state and Bob performs a
homodyne measurement. This scheme is information-theoretically secure if Alice’s signals are
squeezed sufficiently. Protocols in which Alice’s signals are coherent states have been shown to
be secure against certain types of individual attacks![23], but whether information-theoretic
security can be established for a coherent-state protocol remains an important open question.

QKD has also been called quantum key expansion, emphasizing that Alice and Bob must share a
short private key at the start of the protocol, which expands to a much longer key when key dis-
tribution is successful. The initial key is used for authentication; Alice and Bob need a way to
guarantee that they are really talking to one another. Otherwise, Eve could pretend to be Alice
when talking to Bob and pretend to be Bob when talking to Alice (“man-in-the-middle attack”).
Information-theoretically secure classical protocols for authentication are known, but these
require Alice and Bob to share the initial secret key. Suppose that the initial key used for authen-
tication was in fact generated during a previous round of quantum key expansion—might the
eavesdropper exploit this feature to sharpen her attack? This subtle question was answered
recently by Ben-Or and Mayers,![24] who showed that QKD can be safely composed with
authentication without compromising security. This work also highlights the importance of for-
mulating careful definitions of security that are amenable to composability.

Information-theoretic security has also been called “unconditional security,” to emphasize that
there are no assumptions about the technological sophistication or computational power of the
adversary. But of course there are conditions that must be satisfied for security proofs to
apply—in any analysis of security we have to decide what to trust and what to mistrust. For
example, in discussions of QKD, we typically accept that Alice’s random number generator is
reliable, and that Eve has no a priori knowledge of the bases chosen by Alice and Bob in the
protocol. Furthermore, assumptions are needed about the performance of the equipment used
in the protocol, and these should be carefully considered to assess whether QKD is really secure
in realistic implementations.

In the original BB84 security proof by Mayers, it is assumed that Alice’s source is perfect, but
Bob’s detector can be completely uncharacterized; the flaws in the detector cannot fool Alice
and Bob into accepting a key that Eve knows, and the rate of key generation R for a given BER d
is independent of the detector’s performance. Koashi and Preskill![25] showed that an analo-
gous result holds if the detector is perfect and the source is uncharacterized, as long as the
source does not leak to Eve any information about Alice’s basis choice.

The security analysis is more delicate if the faulty performance of the source does reveal some
information about the basis choice. Of particular practical importance is the case where the
source emits weak coherent states rather than single photons, and Alice’s qubit is encoded in
the photon polarization. The source occasionally emits more than one photon in the same
polarization state, and Eve can skim off the extra photon(s), wait until Alice and Bob announce
their bases, and then measure in the correct basis, obtaining perfect polarization information at
no cost in disturbance. The privacy-amplification scheme must be sufficiently powerful (and the
coherent states sufficiently weak), to nullify this advantage. Inamori, Lütkenhaus, and May-
ers![26] proved the information-theoretic security of BB84, where Alice’s source emits weak
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coherent states and Bob’s detector is uncharacterized, establishing that secure final key can be
extracted from sifted key at an asymptotic rate

R ≥ (1 - D) -H2(d) - (1 - D) H2(d/(1 - D)); (Equation A-2)

here d is the BER observed in the verification test, and D=pM/pD, where pM is the probability that
the source emits multiple-photons, and pD is the probability that a photon emitted by the source
is detected by Bob.

More generally, if we trust a characterization of the equipment ensuring that the flaws in the
source and detector are sufficiently small, then in many cases information-theoretic security can
be proven, and lower bounds on the asymptotic key generation rate established; various exam-
ples have been analyzed by Gottesman, Lo, Lütkenhaus, and Preskill![27]. Furthermore, Mayers
and Yao![28] have formulated the concept of a “self-testing” source and detector, which can be
reliably characterized even if we do not trust the devices used to test the equipment. However,
we are still lacking a complete proof of security that applies to arbitrary attacks by the eaves-
dropper and fully realistic implementation.

Another difficulty for the implementation of QKD using polarization encoding is that optical
fibers rotate the polarization, and the amount of rotation may fluctuate over time. Boileau, Got-
tesman, Laflamme, Poulin, and Spekkens![29] proposed a means of overcoming this difficulty,
in which the key bits are encoded in a noiseless subsystem. Their scheme requires Alice to have
a source of entangled photons.

A serious limitation on practical QKD is that losses in optical fibers limit the range over which a
secure key can be established. In principle, the range could be extended dramatically using
“quantum repeaters” that implement quantum error correction; this might be an important
application for quantum computers of modest scale. For example Dür, Briegel, Cirac, and
Zoller,![30] among others, have described how, with reasonable resources, a nested cascade of
entanglement distillation protocols can establish high-fidelity entangled pairs over long dis-
tances, which could then be used for key distribution. Further theoretical work aimed at opti-
mizing the efficiency of quantum repeaters may prove fruitful.

Let us summarize the current status of the theory of QKD. The designer of a cryptographic sys-
tem should ensure that the security of the system rests on a firm foundation. It is reckless to
underestimate the ingenuity of the adversary and inherently risky to assume that the eaves-
dropper will use a particular strategy, even if that assumption seems to be warranted by appar-
ent technological limitations. Therefore, theorists have focused primarily on establishing the
security of QKD against unrestricted attacks by the eavesdropper (“information-theoretic” or
“unconditional” security). Satisfactory proofs of security have been found for protocols exe-
cuted under ideal conditions. However, existing quantum cryptosystems are far from ideal, and
the demanding criteria that these systems must meet to provide genuine security pose new
challenges for the system designer, quite distinct from the problems encountered in classical
cryptography. Recent results show that information-theoretic security can be maintained in the
presence of certain kinds of system faults. An important goal for future research is to sharpen
our understanding of the conditions that ensure adequate security, so that practitioners of QKD
can achieve high confidence in the reliability of their systems.
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B. Beyond Quantum Key Distribution

While QKD has attracted much attention because it is relatively close to practical realization,
there are many other cryptographic tasks for which quantum protocols offer significant poten-
tial advantages over classical protocols. In the past few years, there has been impressive pro-
gress in our understanding of the security of various quantum protocols other than key distri-
bution, but many challenging questions remain. Here we give a brief overview of some of the
recent developments and highlight a few open problems.

1. Quantum bit commitment

In bit commitment, Alice chooses a bit and keeps it secret until she is ready to reveal it to Bob. A
bit-commitment protocol is “binding” if Alice is unable to change the value of her bit after
committing to it, and “concealing” if Bob is unable to learn the bit before Alice unveils it. The
protocol is secure if it is both binding and concealing. Classical bit-commitment protocols are
known that are computationally secure under unproven cryptographic assumptions, but these
are vulnerable to quantum attacks.

In the paper that introduced the BB84 protocol, Bennett and Brassard also proposed a protocol
for coin tossing that in retrospect can be seen to be a quantum bit-commitment protocol. They
demonstrated its security against some attacks but showed that it can be defeated by a cheating
Alice who exploits quantum entanglement to alter her bit after committing. Further developing
this idea, Mayers![31] and Lo and Chau![32] eventually showed that information-theoretically
secure quantum bit commitment is impossible.

Kent![33] has devised a classical bit-commitment protocol founded on the impossibility of send-
ing signals faster than light—it is secure against arbitrary classical attacks and is conjectured to
be secure against all quantum attacks as well. However, this scheme has the drawback that the
security is lost unless Alice and Bob communicate continually from the time of the commitment
to the time of unveiling.

Although no quantum bit-commitment protocol can be both perfectly binding and perfectly
concealing, it is possible to devise protocols that are both partially binding and partially con-
cealing. The tradeoff between the degree of bindingness (the probability that Alice can change
her bit successfully) and the degree of concealment (the probability that Bob can estimate the bit
correctly) has been studied by Spekkens and Rudolph![34]. Furthermore, cheat sensitive bit-
commitment protocols have been proposed![35], such that for any cheating strategy by either
party, there is a nonzero probability that the other party detects the cheating.

2. Quantum coin flipping

In coin flipping, Alice and Bob (who might live in different cities) want to flip a fair coin “over
the telephone.” That is, they are to play a game in which they exchange information and make
alternate moves, where each player prints out the outcome of the coin flip at the end of the
game. If the players are honest, the outcome should be random and both players should agree
on the outcome; furthermore, neither player should be able to bias the other player’s outcome
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by cheating. Coin flipping appears to be an easier task than bit commitment (we can use bit
commitment to achieve coin flipping, but not vice versa), and it has important cryptographic
applications.

While computationally secure classical coin-flipping protocols exist (under plausible crypto-
graphic assumptions), information-theoretically secure classical coin flipping is known to be
impossible. Suppose that Alice wins the game if the outcome is heads, and Bob wins if the out-
come is tails. Then for any classical coin flipping game, one player or the other has a strategy
that ensures a win every time! In contrast, Ambainis![36] and Spekkens and Rudolf![37] have
shown quantum coin flipping-protocols (such that Alice and Bob exchange quantum states
instead of classical information) in which a cheater’s ability to bias the outcome of the coin flip
is limited: a cheater can force a win with probability no greater than 2-1/2.

Are there quantum coin-flipping protocols in which a cheater’s probability of winning is arbi-
trarily close to 1/2? This is an important open question in quantum cryptography. Am-
bainis![38] has shown that if the maximum probability of winning for a cheating player is
1/2!+!e, then the number of rounds of communication in the protocol must grow with e at least
as fast as log(log(1/e)) (still a quite modest rate of growth). And Kitaev![39] has shown that in
any quantum coin-flipping protocol, a cheater can force either a win or a loss with probability at
least 2-1/2.

3. Quantum fingerprints and digital signatures

A fingerprint is a short bit string associated with a long string, such that any two long strings
can be distinguished with high probability by comparing their fingerprints alone. Classically,
the fingerprint can be exponentially shorter than the original string, but only if the parties pre-
paring the fingerprints share a random key. Buhrman, Cleve, Watrous, and de Wolf![40] have
shown that fingerprints consisting of quantum information can be exponentially shorter than
the original strings even without any correlations between the parties. This is possible because
the number of n-dimensional quantum states such that the angle between any two of the states
is independent of n can grow exponentially with n. Gottesman and Chuang![41] used quantum
fingerprinting as the basis for an information-theoretically secure public-key quantum digital
signature scheme. This scheme has the drawback that Alice needs to send a copy of her public
key (a quantum state) to each potential recipient of a message signed by Alice, and that each
copy of the public key can be used only once. Can information-theoretically secure quantum
digital signature schemes be developed that do not have such disadvantages? What other appli-
cations of quantum fingerprints are possible?

4. Quantum data hiding

In quantum data hiding, Charlie encodes quantum (or classical) information in a bipartite
quantum state that is distributed to Alice and Bob in such a way that Alice and Bob can recover
the encoded information with high fidelity if they get together or communicate quantumly. But
if Alice and Bob are limited to classical communication, they cannot learn more than a negligi-
ble amount about the encoded information, even if their local computational power is unlim-
ited. Schemes for hiding classical data in bipartite quantum states were first formulated by
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DiVincenzo, Leung, and Terhal![42] and Hayden, Leung, Shor, and Winter![43] have shown that
when the amount of hidden information is large, one hidden qubit can be encoded per each pair
of physical qubits shared by Alice and Bob.

5. Authentication of quantum messages

In classical authentication, Alice and Bob use a shared private random key to verify with infor-
mation-theoretic security that a message sent from Alice to Bob has not been modified during
transmission. Barnum, Crépeau, Gottesman, Smith, and Tapp![44] have shown that quantum
states sent from Alice and Bob can be similarly authenticated. Furthermore, Oppenheim and
Horodecki![45] and Gottesman, Hayden, Leung, and Mayers![46] have shown that when
authentication is successful, most of the classical key can be safely reused in further rounds of
authentication. In what other quantum protocols might key material be recycled without com-
promising security? Gottesman![47] has shown that a quantum authentication scheme can be
used for uncloneable encryption of classical messages; this means that an eavesdropper cannot
decipher the message even if she later discovers the classical key that was used to encode it. In
what other novel ways might quantum authentication be applied?

6. Encryption of quantum states

Both quantum data hiding and quantum authentication make use of an important crypto-
graphic primitive, the encryption of quantum states (also known as the “private quantum chan-
nel” or “quantum one-time pad”). If Alice and Bob share a secret random classical key, Alice
can use the key to encrypt a quantum state y that she wishes to send to Bob, and if the encrypt-
ed signal arrives undamaged, Bob can use the key to recover y. Furthermore, an eavesdropper
who intercepts the encrypted signal will be unable to learn anything about y. Boykin and Roy-
chowdhury![48] and Mosca, Tapp and de Wolf![49] showed that two bits of shared classical key
per transmitted qubit are necessary and sufficient for perfect encryption. A surprising recent
discovery43 is that for a sufficiently long quantum message, just one bit of key per transmitted
qubit suffices for arbitrarily good encryption.

7. Secure multiparty quantum computation

In multiparty classical computation, each of n parties receives part of the input to a computa-
tion. The parties, communicating via secure pairwise channels, then execute a circuit, with each
party receiving a portion of the output. This procedure is secure if no coalition of cheaters can
learn more about the computation than can be inferred from their inputs and outputs, and if
furthermore the cheaters are unable to alter the output, beyond their ability to choose their in-
puts. Information-theoretically secure classical multiparty computation is possible if fewer than
a third of the parties are cheaters. Crépeau, Gottesman, and Smith![50] have studied multiparty
quantum computation, in which the inputs and outputs are quantum states, and have estab-
lished information-theoretic security if fewer than one sixth of the parties are cheaters. It is an
open question whether this result can be improved to the case where fewer than a quarter of the
parties are cheaters. It will also be interesting to determine whether more cheaters can be toler-
ated in “cheat-sensitive” protocols that abort when cheating is detected.
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8. Quantum-computational security

Classical cryptosystems are often founded on the concept of a one-way function that is easy to
compute but hard to invert, and especially the notion of a trap-door one-way function that can be
inverted easily when some helpful auxiliary information is provided. There are various plausi-
ble candidates for such one-way functions, but no proofs that they exist, and furthermore many
of these candidates are known to be efficiently invertible with a quantum computer. In contrast,
most work on quantum cryptography has focused on establishing security without any com-
putational assumptions. One goal for future research is to find plausible candidates for quan-
tum one-way functions, which are easy to compute but hard to invert on a quantum computer,
and to formulate cryptosystems based on these functions that can be presumed immune to
quantum cryptanalysis. For example, Dumais, Mayers, and Salvail,![51] and Adcock and
Cleve![52] have described how a quantum one-way function could be exploited to formulate
bit-commitment protocols with quantum-computational security. One particularly intriguing
open question concerns secure two-party evaluation of a classical function, where each party
provides an input to the function, and each is to learn the output without finding out anything
about the other party’s input. Computationally secure classical protocols are known, but these
are vulnerable to quantum attack. Can two-party function evaluation be achieved with quan-
tum-computational security? Clearly, much more can be done to develop a theory of computa-
tionally secure cryptography that is suitable for a world in which quantum computers are
commonplace.
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