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1.0 Introduction

Note: This document constitutes the most recent draft of the Theoretical Approaches detailed
summary in the process of developing a roadmap for achieving quantum computation
(QC). Please submit any comments or suggestions on this detailed summary to Todd
Heinrichs (tdh@lanl.gov) who will forward them to the relevant Technology Experts
Panel (TEP) member. With your input we can improve this roadmap as a guidance tool
for the continued development of QC research.

This section of the Quantum Computing Roadmap is the initial effort of the TEP to summarize
the theoretical aspects of QC and quantum information theory (QIT). Section 2 gives an
overview of the role of theory in constructing quantum computers. Section!3.1 presents a
historical survey of some of the key theoretical developments in QC. Section!3.2 gives a more
detailed landscape of the important theoretical challenges in QC, and highlights some grand
challenges. Section!4 surveys the current and prospective future development of QIT, including
capacities, entanglement and correlations, and cryptographic primitives. Section!5 discusses the
four stages of the development of QC architectures that must be accomplished at least once for
each viable QC technology: initial conceptual development; testing components; assembling the
components into a working device; and scaling up the architecture. Section!6 gives an overview
of the role of decoherence in QC and ways to overcome decoherence. This section includes an
extensive list of the sources of decoherence in each type of quantum computer. The Theory
Component of the Quantum Computing Roadmap concludes with a list of references cited.

2.0 Fundamental Theoretical Challenges

Quantum computing as a field has its roots very firmly planted in major theoretical
developments in the 1980s and 1990s. The early musings of Feynman on how efficiently
quantum mechanics could be simulated on a computer, Deutsch’s definition of quantum Turing
machines and quantum circuits, Deutsch and Jozsa’s algorithm, and the study of quantum
complexity theory by Bernstein and Vazirani showing that quantum Turing machines violate
the modified Church-Turing thesis—all led up to Shor’s remarkable polynomial (P) time
quantum algorithms for factoring and discrete logarithm. These algorithms provided the killer
applications that brought QC in the limelight. However, before any serious effort by
experimentalists to realize quantum computers, another seemingly insurmountable hurdle had
to be overcome by theoreticians. Quantum states are fragile and subject to decoherence that is
continuous rather than discrete. This and the no-cloning theorem seemed to rule out the
application of error-correction techniques. The invention of quantum error-correcting codes by
Calderbank, Shor, and Steane overturned conventional wisdom in quantum mechanics and
paved the way for fault-tolerant QC and the threshold result that was independently obtained
by Aharonov and Ben-Or; Knill, LaFlamme, and Zurek; and Gottesman and Preskill. Theoretical
work has played a similarly central role in quantum cryptography (QCRYPT), where the protocol
for quantum key-distribution (QKD) due to Bennett and Brassard from 1984 provided the major
moving force for the field.

For the last decade, QC has brought about a remarkable collaboration between theoreticians
and experimentalists often through joint workshops and conferences. This collaboration has
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resulted in the elucidation of viable designs for quantum computers. The establishment by
DiVincenzo, and Barenco, et!al. of elementary universal families of one and two-qubit quantum
gates for QC did much to simplify the quantum circuit model that the physical design needed to
implement. Theorists, notably Lloyd, Cirac and Zoller, and DiVincenzo proposed the first
potentially viable designs for quantum computers using ion traps and electromagnetic-
resonance techniques. The first prototypes of quantum computers were built by
experimentalists, notably Wineland, Kimble, Cory, and Chuang—working closely with the
theorists.

As the technological program of experimentally realizing quantum computers advances
towards its goals, what is the future role of theory in QC? We outline below some of the grand-
challenge theoretical problems where progress is essential to both the success of the
experimental efforts as well as the impact of QC. (These are elaborated upon in Section!3.2). In
addition, as the experimental effort accelerates, the collaboration between theory and
experiment outlined above must continue to grow and evolve.

2.1 Quantum Algorithms

The search for new quantum algorithms is one of the biggest challenges in quantum
computation today. Although factoring and discrete logarithms provide the killer applications
for quantum computation today, once we have quantum computers, cryptography will no
longer rely on these problems—therefore greatly reducing the practical value of these
algorithms. The exploration of quantum algorithms is therefore of fundamental importance. In
the years since Shor’s algorithms, the framework of the hidden subgroup problem (HSP) has
been developed, and the holy grail of quantum algorithms has been clearly identified as the
HSP for non-abelian groups. Two especially important cases are the dihedral group, which
corresponds to the shortest lattice vector problem, and the symmetric group, which corresponds
to graph isomporphism and graph automorphism, are important in their own right. The two
most promising avenues are to extend the fourier sampling approach used by Shor, and a novel
approach based on adiabatic evolution as proposed by Farhi, et!al.![1] and elaborated by
Aharonov, et!al.![2,3]

Another interesting area is the use of quantum random walks to give polynomial speedups for
basic problems such as element distinctness![4], and their potential for providing exponential
speedups![5].

The future ability of quantum computers might be a decade or two away, their future ability to
break public-key cryptography has important implications for the encryption of highly sensitive
information today.  For these applications, we must already design new public-key
cryptosystems and one-way functions that are immune to quantum cryptanalysis. The existence
of such one-way functions in an abstract setting follows from the paper of Bennett et!al.![6] on
exponential black-box lower bounds for inverting a random permutation. Finding concrete
implementations of quantum one-way functions will require a better understanding of the
scope of quantum algoritms.
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2.2 Quantum Complexity Theory

Understanding the class BQP (bounded quantum polynomial), of problems that can be solved
in polynomial time on a quantum computer, is the fundamental question in quantum
complexity theory. Two very basic questions are the relationship between BQP and NP
(nondeterministic polynomial) and between BQP and PH (the polynomial hierarchy). Although
the early oracle results of Bennett et!al.![6] provided evidence that BQP is not in NP, we must
interpret these results carefully, especially in view of results from [7,8]. Given the enormous
payoff if NP were in BQP, this possibility remains worth exploring. Pessimists might try to
prove that if BQP subset NP then some very unlikely complexity theoretic consequence (such as
the collapse of the polynomial hierarchy) would follow.

2.3 Fault-Tolerant Quantum Computing

The threshold result in fault-tolerant QC says that provided the decoherence rate is below a
threshold h, arbitrarily long quantum computations can be faithfully carried out. Currently the
best schemes for fault-tolerant QC give a value of h between 10-3 and 10-4![9,10]. On the other
hand, the only limit we know on h is that it is less than 1/2![11]. Narrowing this gap, and
improving the achievable threshold is an essential goal for the realization of scalable, practical
QC. Eventually we would like to show that h is of the order of 1/100. Equally important is the
challenge of reducing the overheads in the number of qubits and the processing time incurred
in making a procedure fault-tolerant. Finally, it is important to revisit the model for fault-
tolerant computation, in view of more detailed decoherence models from experimental efforts,
as well as issues such as the relative delays for gate operations versus measurements.

2.4 Simulation of Quantum Systems

Quantum simulation is currently one of the most important applications of quantum
computers. Kitaev’s phase estimation method [12] provides an exponential speedup when
applied to the problem of estimating eigenvalues of an operator![13], a problem of great
importance in many areas of physical sciences. Grover’s algorithm yields quadratic speedups
when it is applied to a variety of continuous problems such as multivariate integration and path
integration![14]. A very recent result by Vidal![15] shows how to classically simulate 1-D spin
chains with logarithmically bounded entanglement length (the entanglement between a
contiguous block of L spins and the rest of the spin chain; that is, the von-Neumann entropy of
the density matrix of the block of L spins) in polynomial time on a classical computer.
Extending this classical simulation to two and three dimensions could potentially have great
impact, because they would be applicable to a greater range of systems.

3.0 Quantum Computation Historical Review

3.1 A Short Summary of Significant Breakthroughs in Quantum Information Theory

Information theory is rooted in physics, which places limitations on how information may be
processed and manipulated for computation and for communication. Before the 1980s this
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meant classical physics, but since that time there has been a conscious paradigm shift to the
examination of benefits that may derive from basing a theory of information upon the laws of
quantum physics. At least two important precursors to this paradigm shift had critical
influence. The first was the demonstration of nonlocal correlations between different parts of a
quantum system, correlations that possess no classical counterpart, by Bell in the early
1960s![16,17]. The second important precursor to the new field of QIT was provided by the work
of Landauer and Bennett on the thermodynamic cost of computation![18,19]. Bennett’s 1973
proof that reversible classical computation is possible![19] was the key idea in Benioff’s positive
response in 1980 to negative prognoses of fundamental limitations of computation provided by
physics![20,21].

In a key paradigm shift, Feynman pointed out in 1992 that simulating quantum physics on a
classical computer appeared to incur an exponential slowdown![22], thus paving the way for
QC. Deutch took a major step further in 1985, with the introduction of quantum circuits and
universal gate sets, providing the critical leap from the restrictions of Boolean logic underlying
classical computation to non-Boolean unitary operations![23]. With this critical step, the concept
of QC was formalized. In 1993, Bernstein and Vazirani![24] built upon an algorithm of Deutsch
and Jozsa![25], to show that quantum computers provide a superpolynomial advantage over
probabilistic computers, thus showing that quantum computers violate the modified Church-
Turing thesis. These algorithms as well as Simon’s 1994 algorithm![26] benefited from the
features of quantum superposition and entanglement, with the roots of the latter clearly
identifiable with the nonclassical correlations observed by Bell in the early 1960s. This slow
growth in exploration of algorithmic advantages derived from quantum circuits for
computation virtually exploded in 1994 with the discovery by Shor of the polynomial time
quantum algorithms for integer factorization and discrete logarithm problems![27], followed by
the discovery of the quadratic speed-up quantum search algorithm by Grover in 1996![28]. Both
of these theoretical results galvanized the experimental community into active consideration of
possible implementations of quantum logic. Experimental interest was further stimulated by
another significant result of Calderbank, Shor, and Steane namely that error correction codes
could be constructed to protect quantum states just as for classical states![29,30,31]. This
demonstration of quantum error correction in 1995 was subsequently incorporated into a
scheme by Kitaev [32], Shor![33], Aharonov and Ben-Or![34], Knill, LaFlamme, and Zurek![35],
and Gottesman and Preskill![36,37] to provide error thresholds on individual operations that
show when computation can continue successfully in the presence of decoherence and errors
(“fault tolerant” computation). This result put the implementation of QC on a similar footing
with classical computation using unreliable gates, and significantly altered the consciousness of
the physics community with regard to experimental implementation.

Quantum complexity theory systematically studies the class of problems that can be solved
efficiently using quantum resources such as entanglement. Bernstein and Vazirani’s 1993 work
showed that relative to an oracle the complexity class BQP, of problems that can be solved in
polynomial time on a quantum computer, is not contained in MA (Merlin-Arthur), the
probabilistic generalization of NP![24]. Thus even in the unlikely event that P!=!NP, quantum
computers could still provide a speed-up over classical computers. The limits of quantum
computers were explored by Bennett, Bernstein, Brassard, and Vazirani![6], who showed that
QC cannot speed up search by more than a quadratic factor. This showed that Grover’s
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algorithm is optimal and that, relative to a random oracle, quantum computers cannot solve
NP-complete problems. They also showed a similar lower bound for inverting a random
permutation by a quantum computer, thus opening up the possibility of quantum one-way
functions. Recently, Aaronson showed a similar lower bound for the collision problem![38], thus
showing that there is no generic quantum attack against collision intractable hash functions.
Kitaev has studied the class BQNP, the quantum analogue of NP, and showed that QSAT
(quantum analog of satisfiable problem), the quantum analogue of the satisfiability problem, is
complete for this class—thus proving that BQNPÕ PSPACE![32]. Watrous considered the power
of quantum communication in the context of interactive proofs, and showed that the class IP
(interaction proof) of problems which have interactive proofs with polynomially many rounds
of communication can be simulated with only three rounds of quantum communication![39]. In
the first demonstration of the power of quantum communication, Burhman, Cleve, and
Wigderson showed how two parties could decide set disjointness by communicating only
square root of n quantum bits, quadratically fewer than the number required classically![40].
Ambainis, Schulman, Vazirani, and Wigderson showed that for the problem of sampling
disjoint subsets, quantum communication yields an exponential advantage over any protocol
that communicates only classical bits![41]. Raz![42] gave a complete problem (a relation) for
quantum communication complexity and showed that it had an exponential advantage over
any classical protocol. Recently, Bar-jossef, Jayram, Kerenidis,![43] showed that one-way
quantum protocols are also exponentially more succinct than classical protocols.

Similar paradigm-changing advances have occurred in the theory of data transmission and
communication as a result of theoretical breakthroughs in QIT. In fact the oldest branch of QIT
concerns the use of quantum channels to transmit classical information, with work of Holevo
dating from 1973![44]. Since then, many significant results for the use of quantum channels to
transmit both classical and quantum information have been established. It is useful to realize
that these, in many cases very practical, results are derived notwithstanding the two famous
results concerning inaccessibility of quantum states, namely the impossibility of distinguishing
distinct quantum states (Holevo)![44] and of copying (or “cloning”) an unknown quantum state
(Wooters & Zurek)![45]. Notable amongst these quantum-information theoretic results with
implications for practical use in quantum communication are quantum data compression,
quantum superdense coding, and teleportation. Together with quantum error correction,
quantum data compression provides a quantum analog for the two most important techniques
of classical information theory. The developments of quantum superdense coding in 1992
(Bennett & Wiesner)![46] and quantum transmission by teleportation (Bennett & coworkers)![47]
in 1993, have no classical analogue and are thus very surprising when viewed from a classical
paradigm. Teleportation allows states to be transmitted faithfully from one spatial location to
the other, while superdense coding allows the classical information to be transmitted with a
smaller number of resources (quantum bits) via a quantum channel. A related property of
quantum channels is superadditivity, namely that the amount of classical information
transmitted may be increased by use of parallel channels![48,49]. Similar to the development of
theoretical techniques to deal with noise in QC mentioned above, a significant theoretical effort
has also focused on the issues arising from communication with noisy channels. Several results
have emerged here, but a number of open questions still remain and this is a very active area of
theoretical work. Important results arrived at in recent years include a bound on the capacity of
a noisy quantum channel for transmission of classical information (Holevo-Schumacher-
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Westmoreland theorem![50,51,52], and the development of protocols for distillation (or
“purification”) of entanglement![53,54,55].

A related area in which QIT has made remarkable advances in the last 20 years is QCRYPT. This
field provides one of the most successful practical applications of quantum information to date,
with the procedures for secure quantum key distribution (QKD). First developed by Bennett
and Brassard in 1984![56], several protocols now exist to make a provably secure quantum key
for distribution over a public channel. These schemes rely on the uncertainty of distinguishing
quantum states, with the security of the key also guaranteed as a result of the ability to detect
any eavesdropping measurement by an observed increase in error rate of communication
between the two parties. The remarkable security properties of QKD are a direct result of the
properties of quantum information, and hence of the underlying principles of quantum physics.

These advances have demonstrated the usefulness, in many cases unexpected, of treating
quantum states as information. They have also validated the field of QIT, providing a critical
stimulus to experimental investigation and in some cases literally opening the path to
realization of quantum processing of information for communication or computation. In fact,
several of the most nonclassical or counterintuitive of the theoretical predictions have been the
first to receive experimental verification (e.g.,!teleportation, superdense coding, and QKD).
Looking back on these developments over the last 20 years, it is reasonable to expect that
further investigation into the fundamentals of quantum information will continue to provide
new and useful insights into issues with very practical implications. We can identify several
outstanding open questions in QIT today, whose solution would impact the field as a whole.
These include complete analysis of channel capacities for quantum information transmitted via
quantum channels and quantification of entanglement measures for many-particle systems.
Another, relatively new direction in QIT focuses on the use of measurements as an enabling tool
for quantum information processing (QIP), rather than merely as a final step or source of
decoherence. Measurement provides our limited access to the exponential resources intrinsic to
quantum states, and recent work has shown that this access can itself be manipulated to control
the processing, including some schemes to perform entire computations using only
measurements in massively entangled states.

The exploration of new quantum algorithms has achieved some success over the last couple of
years, following a lull of about six years after Shor’s algorithm. These include Hallgren’s 2002
quantum algorithm for Pell’s equation![57] (one of the oldest problems in number theory),
which breaks the Buchman-Williams cryptosystem. The framework for quantum algorithms has
also been extended beyond the HSPs. van Dam, Hallgren, and Ip’s 2000 quantum algorithm for
shifted multiplicative characters![58,59] breaks homomorphic cryptosystems, and the same
techniques were recently extended by van Dam and Seroussi (2002) to a quantum algorithm for
estimating Gauss sums![60]. The framework of adiabatic quantum algorithms introduced by
Farhi, Goldman, Goldstone, and Sipser 2000![1], and explored by van Dam, Mosca, and Vazirani
2001![7] and by Aharonov, et!al.![2,3] provides a novel paradigm for designing quantum
algorithms.
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3.2 Current Developments and Directions

This section gives more extensive and detailed descriptions of the theoretical challenges in
quantum computation, and places them in the context of current developments in the field.

3.2.1 Quantum algorithms

The search for new quantum algorithms is undoubtedly one of the most important challenges in
QC today. Following Shor’s![27] discovery of quantum algorithms for factoring and discrete log
in 1994 and Grover’s![28] quantum search algorithm in 1995, there was a period of over five
years with no substantially new quantum algorithms. During this period, the mathematical
structure of Shor’s algorithm was clarified via the formalism of the HSP—polynomial-time
quantum algorithms were known for every finitely generated abelian group. Over the last
couple of years, we are starting to see some progress towards the discovery of new algorithms.
In 2002, Hallgren![57] gave polynomial-time quantum algorithms for Pell’s equation and the
class group problem, thus breaking the Buchmann-Williams cryptosystem. This extended the
framework to nonfinitely generated abelian groups. The two most important open questions in
quantum algorithms are graph isomorphism and the (gap) shortest-lattice vector problem. The
first of these corresponds to the HSP in the symmetric group, and Regev![61] showed that the
second can be reduced to the HSP in the dihedral group. The dihedral group is a particularly
simple nonabelian group, because it has a cyclic subgroup of index two. The standard quantum
algorithm for abelian HSP can be generalized in a natural way to nonabelian groups. It was
shown by Grigni, Schulman, Vazirani, and Vazirani![62] that for sufficiently nonabelian groups
the standard algorithm yields only an exponentially small amount of information about the
hidden subgroup. On the other hand, Ettinger, Hoyer, and Knill![63] showed that the quantum
query complexity of the problem is polynomial. This suggests that novel algorithmic ideas are
necessary to tackle the nonabelian HSP. Recently Kuperberg![64] gave a O(2÷n) algorithm for the
dihedral HSP. The algorithm was an interesting modification of the standard algorithm. Other
computational problems that are potential targets for quantum algorithms are the nonsolvable
group membership, the McElise cryptosystem, and the learning AC0 circuits.

A different approach to designing quantum optimization algorithms via adiabatic evolution
was proposed by Farhi, et!al.![65]. Initial efforts in this direction concentrated on the question
about whether adiabatic optimization could solve NP-complete problems such as variants on
SAT in polynomial time. Surprisingly, query lower bounds do not rule out this possibility![7].
However, van Dam and Vazirani![66] and more recently Reichardt [67] gave classes of SAT
instances for which the spectral gap is exponentially small. Nevertheless, Farhi, et!al.![68]
showed that adiabatic quantum optimization algorithms can tunnel through local optima and
give an exponential speedup over local search. Aharonov and Ta-Shma![2] suggested that rather
than optimization problems, adiabatic algorithms might be better suited for quantum-state
generation. They also showed that every problem in the complexity class SZK can be reduced to
the problem of generating an appropriate quantum state. Aharonov, et!al.![3] showed that a
slightly more general formulation of adiabatic algorithms, when used for quantum-state
generation, is in fact universal for QC. Designing quantum algorithms via quantum-state
generation is a novel and potentially important direction, because it ties into classical algorithm-
design techniques using Markov chains and techniques such as bounds on conductance and
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spectral gaps. As a first step, it would be interesting to even give such an algorithm for solved
problems such as quadratic residuosity or discrete logarithms.

Quantum random walks have held out the promise, over the last few years, as another
interesting approach to the design of quantum algorithms. In the computational context,
quantum walks were introduced by Farhi and Goldstone![69] in 1997 in their continuous-time
incarnation, and in 1998 by Watrous![70] as discrete-time walks. Aharonov, et!al.![71] studied
such walks and showed that their mixing time is polynomially related to that of the
corresponding classical Markov chain. Cleve, et!al.![4] recently showed that in an oracle setting a
quantum-walk-based algorithm gives an exponential speedup over any classical randomized
algorithm. This is based on an exponential speedup by quantum walk for the hitting time
between two specified vertices in a graph. The promise of quantum walks in the design of
algorithms for concrete problems was recently realized by Ambainis![5] by combining it with
Grover’s search. He gave an optimal algorithm for element distinctness. The approach was
further extended by Magniez, Santha, and Szegedy![65] to finding triangles in graphs, and by
others to checking matrix multiplication. In each case, the speedup obtained is by a polynomial
factor. This approach appears to be very promising. Challenges for the future include applying
these new techniques to solve classical computational problems such as matrix multiplication,
determinant computations, bipartite matching, or linear programming.

3.2.2 Quantum error-correction and fault-tolerant QC

The discovery of the threshold result in fault-tolerant QC provided the theoretical basis for
considering truly scalable physical implementations of QC. The original threshold result
showed that as long as the decoherence rate is below h!=!10-6, arbitrarily long quantum
computations may be carried out. The error model here is that each each gate is subject to
decoherence independently with probability h. More recent improvements by Aharonov and
Gottesman![9] put the threshold at 10-4, and Steane![10] shows that under mild assumptions the
threshold is 10-3. These improvements make use of quantum teleportation to prepare ancilla
states![72] as well as improved use of quantum error-correcting codes. On the flip side, the best
upper bound on the threshold was recently established by Razborov![11], who showed that if
the threshold is below 1/2, unless BQP!=!BQNC. For scalable QC to be practical, it is essential to
improve the threshold by at least another order of magnitude.

There is clearly great room for improvement, although this will likely require new techniques.
Equally important are the penalty in the number of qubits and total number of gate operations
incurred to make a quantum circuit fault-tolerant. These currently scale as 7k and 343k

respectively for k levels of error correction. Progress in this area will likely require the study of
new techniques, including the design of efficiently encodable and decodable quantum error-
correcting codes, using expander-graph-based techniques, and list decoding.

Another approach is to search for equivalent quantum models that are resilient to certain types
of noise in the physical system under consideration for implementation. An example of this
approach is the development of encodings based on recognition of symmetries in the physical
interactions underlying the noise sources, referred to as ‘decoherence-free subspace’ and
‘decoherence-free subsystem’ encodings![73]. These provide passive error correction, in contrast
to the active error-correction approach of standard quantum error correction. Additional
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protection can be gained by engineering extra interactions to obtain supercoherent codes which
provide thermal suppression of some physical noise sources in addition to complete protection
against specific errors![74]. More generally, the approach of topological QC provides a powerful
framework to rigorously suppress all effects of noise by encoding into topologically invariant
subspaces![75,76]. This passive approach to error correction has led to the emergence of
alternative realizations of universal QC, including ‘encoded universality’![77] (see Section!5)
and the topological QC paradigm (see Section!3.2.5).

3.2.3 Quantum complexity theory

Clarifying the limitations of QC is a question of fundamental importance. One important issue
is clarifying the relationship between BQP and the classical complexity classes—is NP a subset
of BQP? Does BQP lie in the polynomial hierarchy? Progress towards answering the first
question was made via the oracle results of Bennett, et!al., who showed that relative to a random
oracle NP is not a subset of BQP. This may be interpreted as saying that it is unlikely that
quantum computers can efficiently solve NP-complete problems, or at least that nonrelativizing
techniques are essential to resolving this question. This does not completely rule out the
possibility of tackling this question, in light of the results of Arora, et!al.![8] showing that the
principle of local checkability is nonrelativizing, and the demonstration by Mosca, et!al. that
exponential query lower bounds do not apply to queries that examine the number of clauses left
unsatisfied by the given truth assignment.

Another important issue is understanding whether the limits on QC provide an opportunity to
reconstitute modern cryptography despite Shor’s assault on the two most important one-way
functions—factoring and discrete log. Are there one-way functions that cannot be efficiently
inverted even by a quantum algorithm? The complexity theoretic basis for an affirmative
answer was given by Bennett, et!al., by showing that quantum computers require exponential
time to invert a random permutation in the query model. More recently, it was shown by
Aaronson that quantum computers require exponential time to solve the collision problem in
the query model, thus opening the possibility of collision-intractable hash functions that are
secure against quantum cryptanalysis.

Interactive-proof systems have had important and unexpected applications in classical
complexity theory. Kitaev and Watrous![78,79] proved that quantum interactive-proof systems
have interesting properties and are fundamentally different from classical proof systems. They
showed that that
1. any polynomial-message quantum interactive proof can be parallelized to three-messages

(which does not happen classically unless AM!=!PSPACE), and
2. quantum interactive-proof systems can be simulated in deterministic exponential time.
The first result is interesting because it is unexpected and represents a way of taking advantage
of quantum information that seems to be quite different from other applications. The second
result represents one of the first applications of semidefinite programming to QC.

In the classical case, the study of interactive-proof systems led to surprising and important
applications, in particular with respect to the hardness of approximation problems. Are there
interesting applications of quantum interactive-proof systems? For instance, can quantum
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interactive-proof systems give us insight into designing new quantum algorithms? Presently,
we have no such applications.

The nature of quantum information is such that there is a great potential for zero-knowledge
quantum interactive-proof systems. However, it turns out that perplexing mathematical
difficulties are also associated with quantum variants of zero-knowledge. Watrous![79] proves
some fundamental limitations on one particular type of quantum zero-knowledge, but this is
(hopefully) just a beginning. That paper also defines quantum zero-knowledge in a very
restrictive setting, but even the first step of giving a cryptographically satisfying general
definition of quantum zero-knowledge is a challenging problem.

The simplest variant of the interactive-proof-system model consists of two interacting parties,
one prover and one verifier. A more complicated variant of the model allows multiple provers.
In the quantum setting, fascinating connections exist between this model and the fundamental
notion of a Bell inequality from quantum physics. Kobayashi and Matsumoto![80] studied this
model in a very restricted setting where entanglement between the provers is not permitted.
However, it seems that entanglement is at the heart of the difficulty in understanding this
model in the general case. Two-prover quantum interactive-proof systems could be more
powerful, less powerful, or incomparible with classical two-prover interactive proofs—we
presently know almost nothing about the power of this model, even in the case where the
verifier is classical.

3.2.4 Quantum simulation

Quantum simulation represents, along with Shor’s and Grover’s algorithms, one of the three
main experimental applications of quantum computers. Of the three, quantum simulation is in
fact the application of quantum computers that has actually been used to solve problems that
are apparently too difficult for classical computers to solve. As larger-scale quantum computers
are developed over the next five and ten years, quantum simulation is likely to continue to be
the application for which quantum computers can give substantial improvements over classical
computation.

Quantum simulation was in fact the first proposed application for which quantum computers
might give an exponential enhancement over classical computation. In 1982, Feynman noted
that simulating quantum dynamics on a classical computer was apparently intrinsically hard.
Merely to write down the state of a quantum system made up of N two-state systems such as
spins took up exponential amounts of space in the memory of a classical computer; and
determining the dynamical evolution of such a state required the multiplication of
exponentially large matrices. Suppose, Feynman continued, that it were possible to construct a
“universal quantum simulator”, an intrinsically quantum device whose state and dynamical
evolution could be programmed to mimic the behavior of the quantum system of interest. Such
a device, he concluded, could function as a quantum “analog” computer, capable of
reproducing the behavior of any desired quantum system.

Feynman merely noted the potential existence of such universal quantum simulators: he did not
supply any prescription for how such a universal quantum analog computer might be realized
in practice. In 1996, however, Lloyd, Wiesner, and Zalka showed that conventional “digital”
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quantum computers could be programmed to perform universal quantum simulation. Since
then, Cory et!al. have used room-temperature nuclear magnetic resonance (NMR) QIPs to
perform coherent quantum simulations of harmonic oscillators![81,82,83] and chaotic quantum
dynamics such as the quantum Baker’s map![84,85]. Note that for the purpose of quantum
simulation, the apparent lack of scalability of a room-temperature NMR QIP does not prevent
such a processor from supplying an apparently exponential speed-up over a classical computer:
simulating high-temperature quantum systems is still apparently exponentially hard![86].

An example of a large-scale experimental realization of quantum simulation is the use of solid-
state NMR QIPs to study the diffusive limit of transport of dipolar coupled spins in dielectric
single crystals. The multibody dynamics were studied over times of tens of seconds,
corresponding to of order 108 times the spin-spin correlation time, and spin transport over a
distance of 1!µm. One result of these studies was to reveal that the diffusion constant for the
two-spin dipolar ordered state is roughly 4 times faster than that of the single-spin, Zeeman
ordered state. This speedup was not predicted by theoretical models and has been attributed to
constructive interference in the transport of the two-spin state. Today solid-state NMR permits
selected multibody problems to be addressed, the field does not yet have sufficient control to
enable universal quantum simulation![87,88].

Another potentially interesting source of problems relevant to the sciences are continuous,
numerical problems such as integration and Feynman integrals. Because Grover’s algorithm
gives a quadratic speedup for not just search but also counting, it can be applied to get a
quadratic speedup for integration in a natural way![14]. It remains an interesting open question
whether some of the more sophisticated quantum walk techniques or other quantum algorithm
techniques can be used in this context.

At the other end of the spectrum, QIT has provided novel algorithms for classically simulating
quantum systems with limited entanglement. Vidal et!al.![89] characterized the scaling
properties of the ground-state entanglement in several 1-D spin-chain models both near and at
the quantum-critical regimes. They showed that the entanglement length scales logarithmically
in the number of spins [it scales like log(L)]. Vidal![15] recently gave an efficient classical
algorithm for simulating the dynamics of 1-D spin chains that runs in time exponential in the
entanglement length. Experimental results suggest that this method may be very effective in
simulating a variety of systems. Extension of these results to 2-D and 3-D would be very
interesting.

3.2.5 Novel models

What are the primitives necessary to carry out QC? The answer in the quantum circuit model is
clear—an implementation of qubits, a universal set of quantum gates, and the ability to measure
the output. In recent years, there has been an exploration of novel models for QC that look
fundamentally different from the quantum circuit model. One of the first such attempts, the
topological QC, provides a different paradigm in which the qubits are no longer identified with
specific atomic degrees of freedom but with collective excitations that must then be
manipulated. Another approach was motivated by an attempt to prove that linear optics cannot
be used to implement scalable quantum computers. In the attempt, Knill, Laflamme, and
Milburn![76,90] discovered a technique, using teleportation-based![72] use of ancillas, of
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implementing scalable QC using linear optics. In a different direction, Nielsen![91] showed that
projective measurements can be used in the place of quantum gates as the fundamental
primitive for QC. This was followed by the results of Raussendorf and Briegel![92] showing
how to perform QC by preparing certain highly entangled cluster states, followed by a sequence
of measurements. Adiabatic QC, first proposed by Farhi, et!al.![68] and then generalized by
Aharonov, et!al.![2,3] starts with an initial state which is the ground state of a sum of local
Hamiltonians, and then gradually transforms to a different sum of local Hamiltonians whose
ground state is closely related to the desired output of the QC. Aharonov, et!al. showed that this
model is exactly as powerful as the quantum circuit model, thus providing another potential
implementation of QC. The nontrivial spectral gap gives this model some natural fault-tolerant
properties.

The role of entanglement in the power of QC is a fundamental theme. Two questions about this
issue have arisen in the context of liquid NMR QC. The first question asks about the
computational power of a mixed state quantum computer whose state is required to be
separable at every time step of the computation. Caves and Schack![93] pointed out that even
though at first glance this model appears to be classical (because there is no entanglement), we
do not know how to simulate it classically; nor do we know how to perform nontrivial QC with
it. Another model, proposed by Knill and Laflamme [94] consists of 1 clean qubit with n-1
qubits in the maximally mixed state. Pulin et!al.![95] give a quantum algorithm in this model to
measure the average fidelity decay of a quantum map under perturbation.

4.0 Quantum Information Theory

This section is a survey of the current and prospective future development of QIT. Continuing
progress in QIT is crucial to the ultimate success of the laboratory implementation of QC. QIT
addresses itself to performing useful processing tasks with noisy resources, and doing so
optimally. The laboratory work in quantum information is and will be plagued by noise, and
knowing the strategies for dealing with these (e.g.,!using a well chosen quantum error
correcting code) will be very important for making progress. In addition, QIT invents
fundamentally new applications for distributed quantum processing. These are in the form of
uniquely quantum-mechanical cryptographic primitives such as quantum key distribution,
quantum data hiding, and private remote database access.

For the purposes of this write-up, “QIT” should be understood as the information-theoretic
analysis of quantum-mechanical systems. Information theory quantifies the correlations
between separated systems and the amount by which these correlations can be enhanced using
the communications resources at hand. This subject sits at a more abstract level than the
analysis of particular information-processing systems; that is, it does not address itself to the
particularities of optical or electrical systems, but attempts to give a general framework within
which the analysis of any such particular system can be performed. QIT is also distinct from
algorithm theory, which seeks efficient procedures for solving mathematical problems; it does
interface with it on the point of distributed algorithms, in which procedures using both local
computation and communication are employed. The manifold uses of quantum teleportation
are a prime example here.
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We have chosen to discuss QIT below in terms of three big organizing themes: capacities
(i.e.,!carrying capabilities of different communication resources); entanglement
(i.e.,!quantification of the correlations, quantum and otherwise, between different subsystems);
and cryptography (i.e.,!what do we do with these capacities and correlations when we’ve got
them).

Very close to this subject, but distinct enough that they will not be discussed here, include the
studies of communication and sampling complexity in the quantum setting![96], distributed
quantum algorithm design, and quantum Kolmogoroff complexity![97,98].

4.1 Capacities

One of the two important quantifications of information theory is the calculation of capacities.
Capacities measure the rate at which correlations (e.g.,!knowledge of a message text, shared
randomness, quantum entanglement) grow per use of the given communications resource, in an
“asymptotic” setting where arbitrarily many uses of the communication resource are available.
More than one type of capacity is definable in the classical setting, and the number of different
capacities grows substantially in a quantum setting, because there are more distinct types of
channel resources available, as well as more distinct types of correlations.

Historically one can consider Holevo’s investigations in the ’70s![99] as the starting point of this
subject, when he considered the classical capacity of a quantum state; this work remains
seminal, in that it established that, in general, a two-level quantum state is not capable of
carrying more than one bit of information, despite the large amount of information needed to
describe such a quantum state. One can say that it is the evasions of this theorem of Holevo, in
the various special circumstances where one qubit can amount to more than one bit of
information, that have been one of the important general themes of QIT.

In current language, Holevo’s result pertains to the transmission of classical correlations (i.e.,!a
classical message text) from sender to receiver (frequently “Alice” and “Bob” below) using a
particular kind of quantum channel, which conveys a certain ensemble of quantum states yi
perfectly. This kind of channel is now known as a “cq” channel![100], in which a classical
instruction, i, indicates that the quantum state yi should be synthesized, and then conveyed
undisturbed to the receiver. This is now considered as a special case of a more general resource,
the quantum channel, which is described by some general completely positive trace preserving
linear map between a quantum input state and a quantum output state![101]. The general
question of the text-carrying capacity of such a general channel has been partly solved, in that
there is a formal expression (the Holevo capacity) for this quantity![51,52]. A big open question
remains, however, about the evaluation of this expression, which is one of several “additivity”
questions that remain open in QIT![102]. The Holevo capacity expression involves an
optimization over some number, N, of uses of the quantum channel, where N could be
unboundedly large. The capacity is “additive” if the optimal is achieved for N!=!1. For N!=!1 the
optimization is quite easy, and an explicit form (the Holevo c function) is known. But this and
other additivity questions remain high on the priority list for solution in this area.

Perhaps the simplest quantum capacity is what has been called “Q”![55], the capacity of a noisy
quantum channel to faithfully convey quantum states. Q is important from various points of
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view; achieving it requires the use of quantum error-correction codes, and the optimization of Q
can and will drive the optimization of these codes. Q also provides a bound on D, an important
measure of the entanglement of mixed quantum states, the distillable entanglement![55] (see the
next subsection). An entropic expression is now known for Q, the so-called coherent
information![103]. It is known not to be additive, and its evaluation even for most qubit channels
remains open.

Of the multitude of mixed capacities that can be considered, the first one to be studied was the
one involving the same task as Q, that is, faithfully conveying quantum states from sender to
receiver; but a dual resource was considered, namely a noisy quantum channel plus a classical
side channel. It was shown that a forward side channel cannot increase Q, but that a two-way
classical channel does, introducing a new capacity, Q2,![55] (referring to the case of unlimited
two-way use of the side channel). Bounds can be given for Q2, and there are known to be
quantum channels for which Q2!>!0 but Q!=!0; but there is no known entropic expression for Q2,
and there are no obvious strategies for making the present bounds on Q2 tighter.

The other dual resource capacity that has received a lot of attention is one for which both a
channel and shared entanglement are available. The prototypes of these problems are quite
famous: if the channel is a noiseless quantum channel, and the task is the conveyance of
classical data, then this is the “superdense coding”![46] problem, in which one use of the
channel, and the consumption of one entangled EPR (Einstein, Podolsky, Rosen) pair, results in
two bits sent. The generalization of this to a noisy quantum channel gives a capacity that has
been called CE![104,105]; useful entropic expressions for CE have been derived, and it is known
to be additive. The dual problem, in which the channel resource is classical, but quantum states
are to be transmitted, is teleportation![47]. The fully quantum version of this, in which the
channel is quantum and the data to be transmitted is quantum, gives a capacity known as QE.
For all channels, QE!=!1/2!CE![47], showing that added resources can sometimes simplify the
quantification of capacities.

Several other tasks that have no analog in the classical world have been considered in recent
work. One is “remote state preparation”![106]—given a sender who has complete knowledge of
a quantum state, the objective is for the recipient to come into possession of a faithful specimen
of that quantum state. If the resources to be used are shared EPR pairs and a classical channel,
the scenario resembles teleportation; but unlike in teleportation, the “capacity”, that is, the
minimal resources needed to perform the task, are highly non-trivial![107,108]. (More use of the
bit channel can reduce the number of EPR pairs needed.) Another uniquely quantum task is the
“remote POVM”, in which the sender has a set of quantum states, and the recipient is to obtain
a bitstring that represents a fair draw from the output of the POVMs performed on these states.
This is to be done using a classical bit channel between sender and receiver, plus preshared
randomness. The optimal capacity for this problem is also highly nontrivial, and has introduced
new methods for the analysis of a host of other capacity problems![109].

To summarize this work, capacities are defined with respect to the following tasks:
ß bit transmission;
ß qubit transmission;
ß remote state preparation;
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ß remote POVM;
ß private key transmission;
ß sharing of entanglement; and
ß intersimulation (e.g.,!simulating a noisy channel by a noiseless one).
Employing the following means:
ß classical channel (noisy or noiseless, one-way or two-way);
ß quantum channel (noisy or noiseless)!;
ß shared correlations:

® quantum (noisy or noiseless entanglement) or
® classical (shared randomness); and

ß quantum interaction (i.e.,!two-body Hamiltonian acting over time t).
Matching all possible tasks with all possible means, and including multiple parties, leads to the
observation that the amount of work to be done in this area is practically infinite. It appears that
the community will continue to tackle various cases among these infinite possibilities as the
interest arises.

4.2 Entanglement and Correlations

Because, from some point of view, entanglement is simply one of the correlation resources
available in quantum communication, it would seem that it might not deserve a heading of its
own in a survey such as this. But this would be unfair to the unique role that it plays in the
quantum setting; it is the feature of the quantum world that distinguishes it from the classical
world![110,111], saying that for a single pair of systems, a description of each system’s state is
not sufficient to describe the entire state of the system; it is the property that permits the
violation of Bell’s inequalities![112]. It is also the feature of quantum systems that makes
exponential speedup of computations possible![113]. Thus, entanglement is of special interest,
both from the foundational and the practical point of view. And thus, not surprisingly, it has
received a large amount of special attention within the quantum-information community, and
will doubtless continue to do so.

A great deal of work has been done and continues to be done on the problem of measuring
entanglement. For pure states of two parties, there is a single measure that, for most
information-theoretic purposes, is satisfactory for quantifying entanglement: the von Neumann
entropy of the reduced density matrix![53]. (By “information-theoretic”, we mean that, as above,
we consider an asymptotic situation in which many copies of the states of interest are available.)
For almost any other circumstance, it seems impossible to devise a single measure that will
quantify entanglement in physically meaningful ways. The prototype example of this is the
mixed state of two parties. If the state is separable (can be written as a convex mixture of product
projectors), then for almost all purposes the state may be considered to be unentangled![55]; the
state has correlations, but for most purposes (some exceptions occur in the next section on
cryptography) these correlations behave as in the classical world. So, if a mixed state is
inseparable, it is entangled. But how entangled is it? Here is a list of some of the measures that
have been described:
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ß Distillable entanglement (D)![55]. This measure is an answer to the question: how good is
my entangled mixed state for doing quantum teleportation? Thus, it has an operational
significance in quantum capacities. The distillable entanglement is also the number of EPR
singlets that can be obtained from a set of copies of the given mixed state, assuming that the
parties can do only “local” operations, where “locality” includes the possibility of classical
communication. This was the first setting in which the class of quantum operations denoted
by “local quantum operations and classical communication” (usually LOCC [local
operations and classical communication]) was introduced—although in some sense it was
already implicit in discussions of Bell inequalities. This class of operationally local quantum
dynamics has now been considered in many other contexts.
The effort to calculate D explicitly has been difficult. It turns out to have none of the
convexity or additivity properties that one would desire for an information-theoretic
measure to apply to D![114]. Also, D is not nonzero for all inseparable states![115]; but this
relates to the PPT story discussed below.

ß Entanglement of formation (EF)![55]. This is defined as the minimum average entanglement
of a pure state ensemble making up the mixed state. Thus, it is not an operational measure
of entanglement, but it is one that is amenable to exact calculation, and it is an upper bound
on D. It is nonzero for all inseparable states. When it was constructed it was intended to
have an operational meaning of the

ß Entanglement cost (EC)![116], which is the smallest number of EPR pairs needed to create a
given number of copies of a mixed state, r, by LOCC operations. This may equal the
entanglement of formation, but it turns out that this is one of the “additivity” questions that
has not been settled, and is equivalent to the additivity conjecture for the Holevo capacity
[102].

This by no means exhausts the list of entanglement measures of mixed states:
ß Relative entropy of entanglement![117,118]. This measure is based on the idea that

entanglement should be measured by “how far” r is from the set of unentangled (separable)
states. One way of measuring “how far” for quantum states is by their relative entropy. This
measure is upper bounded by the entanglement cost, and lower bounded by the distillable
entanglement. It is relatively easy to compute. It also has the property that it cannot be
increased under “separable” quantum operations![119]. This class is not the same as LOCC,
but it does include it. This result is illustrative of a more general principle in the
quantification of entanglement: because it is supposed to represent uniquely quantum
correlations, it should not be possible to increase it using only classical communication
between the parties. This has led to

ß Entanglement monotones![120]. This is a kind of metameasure—in that it potentially
includes an infinity of specific measures. It simply states that any functional of the quantum
state that is nonincreasing under LOCC should be considered a measure of entanglement. It
is known that there is a whole continuum of such measures, which (under sensible
restrictions) lie between the entanglement cost and the distillable entanglement.

ß Negativity![121]. This quantification arises from a different idea about the characterization
of entanglement, that arising from the “partial transpose.” Peres![122] noted that if the
partial transposition, that is, matrix transposition applied only to the indices of one of the
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parties, is performed on the matrix describing a separable mixed state, the result is always
another mixed state (i.e.,!it is another matrix with nonnegative eigenvalues). On the other
hand, if it is applied to the density matrix of an EPR pair, the result is a matrix with some
negative eigenvalues. The “Peres criterion” for entanglement states that r is entangled if its
partial transpose is negative. For small Hilbert spaces this is a necessary and sufficient
condition for entanglement![123]; but in higher Hilbert space there are entangled rs that are
positive under partial transpose![115]. Recognizing this flaw, it is still possible to give
another quantification of entanglement that is the sum of the negative eigenvalues of the
partial transpose. This measure is easy to compute and has been used to develop bounds in
some calculations pertaining to entanglement.

So, this relatively innocent exercise of trying to associate a number with a degree of
entanglement has led to a very complex discussion that raises questions on various
fundamental aspects of quantum theory. First, one can ask, can entanglement be reversibly
converted from one form to another? For pure bipartite states the answer is yes![53]; this is
related to the fact that there is considered to be only one information-theoretic measure of pure
state entanglement. Thus, a large supply of partially entangled mixed states can be converted,
by purely local operations, to a smaller supply of EPR pairs (“entanglement concentration”),
and converted back again to the same number of partially entangled states (“entanglement
distillation”). But for mixed states the answer is the reverse![55,116], thanks to the known gap
between the entanglement cost and the distillable entanglement. This is connected with another
basic question: why does the partial transpose criterion sometimes fail to detect the
entanglement of a state? One answer to this is that states exist for which the entanglement cost
is finite but the distillable entanglement is zero, so the irreversibility is complete. States for
which this happens are said to have “bound entanglement”![115], meaning that it cannot be
freed up by LOCC operations.

A great deal is known about bound-entangled states now, e.g.,!how to construct instances of
such states![115,124,125,126], but there remain many unanswered questions about them. Also,
this is related to a final question that is only partially answered: what is a good notion of locality
for joint operations involving two parties? It was once thought that the LOCC class captured
everything of interest; that is, all LOCC operations resulted in only classical correlations (they
do not produce or increase entanglement), and that all operations outside the LOCC class could
produce quantum correlations.

This is no longer so clear. We mentioned that in the context of the relative entropy of
entanglement, the “right” characterization of local quantum operations is the “separable” class,
in which each Krauss operator of a superoperator can be written in a product form. It is
somewhat surprising that this class is strictly larger than the LOCC class![119]. Yet, from most
points of view, such an operator seems incapable of generating any entanglement.

There is yet a larger class, which is called the “ppt preserving” class![127], which by definition
includes all bipartite quantum operations such that if the input state is positive under partial
transposition, so is the output. These operations can definitely produce entanglement, but only
of the bound variety. (So, for example, it cannot produce the kind of entanglement that would
be useful for teleportation). Thus, many entanglement measures of interest are well behaved
even within this large class. This class has been very useful because its mathematical
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characterization turns out to be much simpler than either the LOCC or the separable class. But it
remains unclear whether this class of quantum operations has any real physical significance.

The experimental detection of entanglement has been a subject of more recent theoretical
interest. The simplest way to approach this, which requires no new ideas, is that a state can be
characterized by quantum tomography; then, if the tomography is sufficiently precise, any of
the measures of entanglement discussed above can be calculated for the state. But there are
potentially more direct ways in which this determination can be made. Terhal’s “entanglement
witness”![128] is a Hermitian operator, W, that has the property that its expectation value Tr (W
r) is positive for all unentangled states, but is negative for some entangled states.
(Unfortunately, it is impossible for it to be negative for all entangled states.) Thus,
determination of the expectation value of W by repeated measurement can detect entanglement
(a negative answer means entangled), and the value of this expectation value becomes another
quantification of entanglement. Nonlinear functionals can also detect entanglement: one can
find quantum operators for which the variance is only zero for entangled states, being nonzero
for all unentangled states![129]. Finally, there are modifications of tomography such that, with
only a subset of the measurements performed for full tomography, it can be determined
whether a state is entangled or not![129]. It is expected that future work in this area will connect
these means of detecting entanglement more directly with the applications of entanglement in
cryptography, communications, and computing.

All of the characterizations of entanglement that we have discussed so far are “information
theoretic”, i.e.,!apply to a setting where there is a large supply of identical copies of the state r
of interest; many of the measures of entanglement we discussed, for instance, involve taking the
limit of the number of copies of the state to infinity. But there is another, potentially more
practical, area of investigation in which the number of copies of the state is considered to be
limited. For example, one can ask, if only one specimen of the bipartite state r is held by two
parties, is it possible for them to convert this state, by LOCC operations, to a single specimen of
the state r'? If r and r' are pure, then there is a very beautiful answer to this question involving
the statistical concept of majorization![91]. But almost all other problems in this area are open.

Finally, it should be mentioned that the theory of entanglement has a direct bearing on QC
itself. The theory of quantum error-correcting codes, and their application to fault-tolerant QC,
is from some point of view a theory of the properties of special kinds of entangled states. It is a
paradoxical truth that has emerged from quantum information research that sometimes highly
entangled states can be more robust against decoherence than apparently more classical
unentangled states![37]. This robustness has also had application in areas of QCRYPT (see secret
sharing, below). Entanglement can also be used in the implementation of quantum logic gates;
teleporting through the right kind of entangled quantum state can result in two-bit gate
operations applied to a pair of qubits![130]. Generalizations of this ideas have resulted in the
discovery that linear optics is sufficient for QC![90]. Also, it is now known that with the right
kind of entanglement (the “cluster state”), QC can be reduced completely to a sequence of local
quantum measurements, with all information flows in the computer being classical![92]. There
is likely to be considerably more work to be done in this area, to connect these remarkable
features of entanglement to other workable approaches to QC in the laboratory.
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4.3 Cryptographic Primitives

Broadly defined, cryptography considers distributed information-processing tasks constrained
by requirements of privacy, secrecy, and security. Quantum mechanics has offered a new toolkit
for the construction (and demolition) of cryptographic tasks, and this remains an extremely
active area of research.

In many people’s minds, cryptography is defined as the sending of secret messages from one
party to another. While cryptography actually encompasses much more than this task alone, the
“key distribution” problem is still central to QCRYPT, and it is the only one for which there is
active laboratory work. The theory of secure key distribution using quantum channels has been
undergoing a continuing rapid evolution in recent years. The basic idea of using the
unclonability and unmeasurability of single unknown quantum states to make secret messages
intrinsically unreadable to an eavesdropper (without disturbance) dates back to Wiesner’s work
in the 1970s![131], and the explicit protocols for doing this style of cryptography were all
established more than 10 years ago, independently by Bennett and Brassard![56,132] and by
Ekert![133]. This work was enough to stimulate serious experimental work![134], which
continues to this day. But the security of these protocols remained unproved in the general
setting for many years, although proofs for restricted “Eves” were known some time ago. In
addition, there was an early insight that entanglement distillation would be a crucial ingredient
in this proof![135,136], although the details were a long time in coming. But the real revolution
in this area theoretically was initiated by Mayers in the late ’90s![137]. He found a proof that
BB84 is absolutely secure for sufficiently low detected bit error rate for quantum transmission.
His proof was difficult and was not understood by much of the community for some years; but
the revolution was made general by Shor, who, with Preskill![138], redid Mayers proof in much
more transparent language.

Shor’s starting point was a different proof by Lo and Chau![72] that a different key-distribution
protocol involving the distillation of perfect entanglement is secure. This proof was much easier
than Mayers’ and established that the Ekert![133] style of “quantum Vernam cypher” QCRYPT

was actually valid, but assumed that Alice and Bob have the full power of QC. Shor and Preskill
showed that using a particular style of quantum error-correction code in the Lo-Chau
purification permitted a reduction of this proof to BB84. Their approach to this proof has been
workable enough that more results are now flowing out; one result involves the strengthening
of the BB84 by use of two-way classical (insecure) communication; it is now known that this
resource permits secure key distribution in a more noisy environment (i.e.,!a more aggressive
eavesdropper). Also, B92 has been proved secure now by an ingenious variant of the Shor
reduction![139].

It appears that this activity in security proofs for key distribution still has a long way to go. Very
important fundamental and practical questions involving imperfect sources persist.
Fundamental questions also remain open about the relation of security to the violation of Bell
inequalities. Also, because experiments are underway, there are a host of technical questions
(e.g.,!involving the use of weak coherent sources) that deserve theoretical attention.
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As stated above, cryptography is not just secret-message transmission. We give a brief survey
here of the other areas of cryptography that have been reconsidered in the light of quantum
theory:

ß Bit commitment.  Bit commitment, a primitive for many other forms of cryptography
(e.g.,!secure function evaluation) involves
1. the choosing of a bit value by Alice,
2. the commitment by Alice of this bit value to Bob in an unreadable form, and
3. the unveiling of this bit value to Bob at a later time.
Mayers![140] showed that bit commitment is impossible in the standard quantum model of
the world, by showing that Alice can always cheat by using quantum entanglement.
Partially secure bit commitment is possible and has been analyzed![141]. An interesting
recent development here is to consider the effect of various additional fundamental and
practical physical effects on the security of bit commitment. For example, special relativity
makes a limited form of secure bit commitment possible. Recent work has focused on the
role of selection rules. It is now believed that fundamental selection rules (e.g.,!charge
superselection) do not modify the no-go theorem for bit commitment, although the proof is
considerably more technical. Perhaps more interesting is the fact that non-fundamental,
technological restrictions (e.g.,!the inability to change spin angular momentum in the lab)
may enable a new kind of conditionally secure bit commitment. Current theoretical work in
this area is very active.

ß Remote coin tossing.  As with bit commitment, there are quantum no-go results![142].
However a closely related primitive, weak coin tossing, in which Alice would prefer a
“heads” and Bob would prefer a “tails” is sufficient for most of the applications of coin
tossing. Ambainis and Kerenidis & Nayak gave protocols for weak coin tossing that beat
Kitaev’s bound, thus showing that his no-go theorem does not apply in this case. Whether
protocols that achieve arbitrarily small bias exist is an open question.

ß Quantum secret sharing.  Secret sharing is a concept in classical cryptography in which many
parties receive “shares” of a secret that are unintelligible to the individual parties, or to
small groups, but can be faithfully reconstructed if any “quorum” of these parties is brought
together or can communicate among themselves. There are protocols that perform similar
functions in which a quantum state is the secret![143]. That is, parties receive shares of a
quantum state, whose identity is unintelligible to single parties (i.e.,!the reduced density
matrix is proportional to the identity operator). Classical or quantum communication
among a subquorum of parties also is incapable of revealing anything about the identity of
the secret.

ß Quantum data hiding.  This is dual to the previous: the idea is that the parties receive
“shares” representing ordinary classical data, but the idea is to enforce security in the
presence of arbitrary classical communication. Thus, reconstruction of the secret is only
possible with quantum communication. The existence of states that perform this task is
known![144], and, surprisingly, it is known that they can be separable mixtures (i.e.,!they
need not involve any entanglement)![145]. Also recently, it has been shown that a variant of
quantum data hiding can be used in conjunction with quantum secret sharing to strengthen
the security of the latter![146].
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ß Quantum fingerprinting.  Fingerprinting is a classical technique for associating with each
large data set a small bitstring such that the bitstring for each data set is distinct. It has been
shown that using quantum techniques, more efficient construction of fingerprints for
distributed data sets is possible![147].

ß Secure remote computation.  In this protocol, the premise is that Alice has a computation she
wants to do on a quantum computer; she has only a very small computer, but she has a
quantum channel connecting her to Bob, who has a large quantum computer. She wants to
have a computation performed by Bob, but she does want him to know the nature of the
computation or for him to be able to obtain any information about the answers without her
detecting it. A quantum protocol exists that meets all these requirements![148,149].

ß Private quantum channels.  Quantum channels can be made private, i.e.,!containing only
transmissions that are completely unintelligible to an interceptor, with the use of shared
classical randomness between sender and receiver. For exact privacy, two bits per sent qubit
are necessary and sufficient. For asymptotically perfect privacy, it is now known that one bit
per qubit is sufficient![150,151,152,153]. If this shared resource is quantum, then there are
scenarios in which the shared resource can be recycled![154] (if a negligible amount of
eavesdropping is detected).

ß Quantum digital signatures.  With this scheme, a sender (Alice) can sign a message in such a
way that the signature can be validated by a number of different people, and all will agree
either that the message came from Alice or that it has been tampered with. To accomplish
this task, each recipient of the message must have a copy of Alice’s “public key”, which is a
set of quantum states whose exact identity is known only to Alice. Quantum public keys are
more difficult to deal with than classical public keys: for instance, only a limited number of
copies can be in circulation, or the scheme becomes insecure. However, in exchange for this
price, unconditionally secure digital signatures are claimed. Sending an m-bit message uses
up O(m) quantum bits for each recipient of the public key (adapted from![155]).

ß Privacy in remote database access.  Private-information-retrieval (PIR) systems allow a user to
extract an item from a database that is replicated over k≥1 servers, while satisfying various
privacy constraints. Quantum k-server symmetrically private information-retrieval (QSPIR)
systems have been found that
® use sublinear communication,
® do not use shared randomness among the servers, and
® preserve privacy against honest users and dishonest servers.

Classically, SPIRs without shared randomness do not exist at all (adapted from![156]).

ß Quantum interactive proofs.  Certain computational problems (e.g.,!graph nonisomorphism)
are defined as requiring the participation of two parties; of interest is the case where one
knowledgeable party is trying to prove something to an ignorant but intelligent party. It is
know that these “interactive proofs” may require arbitrarily many rounds of
communication between the two parties. It is now known that in a quantum settings, just
three rounds of quantum communication are sufficient![78].

ß Authentication of quantum messages.  Authentication is a well-studied area of classical
cryptography: a sender, S, and a receiver, R, sharing a classical private key want to exchange
a classical message with the guarantee that the message has not been modified by any third
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party with control of the communication line. Authentication of messages composed of
quantum states is possible. Assuming S and R have access to an insecure quantum channel
and share a private, classical random key, a noninteractive scheme exists that enables S both
to encrypt and to authenticate (with unconditional security) an m qubit message by
encoding it into m!+!s qubits, where the failure probability decreases exponentially in the
security parameter, s. The classical private key has 2m!+!O(s) bits. Any scheme to
authenticate quantum messages must also encrypt them. (In contrast, one can authenticate a
classical message while leaving it publicly readable.) This gives a lower bound of 2m key
bits for authenticating m qubits, and it shows that digitally signing quantum states is
impossible, even with only computational security (adapted from![148,149]).

ß Secure multiparty QC.  Secure multiparty computing, also called “secure function
evaluation”, has been extensively studied in classical cryptography. This task can be
extended to computation with quantum inputs and circuits. The protocols are information-
theoretically secure, i.e.,!no assumptions are made on the computational power of the
adversary. For the weaker task of verifiable quantum secret sharing, there is a protocol that
tolerates any t!<!n/4 cheating parties (out of n). This is optimal. This tool can perform any
multiparty QC as long as the number of dishonest players is <!n/6 (adapted from![148,149]).

5.0 Quantum-Computer Architectures

Large-scale quantum computers, if they can be built, will be complex quantum systems with
many parts, all of which must work together coherently to perform large-scale quantum
computations. To construct a large-scale quantum computer, it is not enough to exhibit
components (qubits, quantum logic gates, input-output devices, etc.) sufficient for attaining the
DiVincenzo criteria, and each of which on its own attains the limits required for fault-tolerant
QC. The components of a large-scale quantum computer must be designed to fit together and to
work together. That is, a large-scale quantum computer must have an architecture—a unified
overall design in which each component plays an integral role. In addition, each of these
components must be designed  for optimal efficiency. For example, the quantum fourier
transform is a fundamental building block in all quantum algorithms, and recent work has
shown that we can significantly enhance the performance of this component by implementing
quantum circuits for the quantum fourier transform with only logarithmic depth![157,158].

Note that theory, coupled strongly to experiment, is a necessary part of developing a viable
quantum-computer architecture. Designing an architecture for a quantum computer is
fundamentally a theoretical task: one is creating specifications and solving problems for a
device that does not yet exist. Of course, because a viable architecture must marry theoretical
concept with experimental reality, the design of such an architecture is a theoretical task at
which experimentalists can excel as well as theorists. As will be seen below, in the specification
of the stages and development of quantum-computing architectures, designing and building
quantum computers is a task that must be performed by experimentalists and theoreticians
working together. For example, approach of 'encoded universality', which emerged from
theoretical work in decoherence-free subspaces, has potential for simplifying spin based
computation in solid state QC since it relies exclusively on tuning the exchange interaction and
does not require local magnetic fields![159].
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A quantum-computer architecture specifies not only the components of a quantum computer
(qubits, quantum logic gates, I/O devices, etc.), but provides protocols and mechanisms for
how those components are to work together. Even at the early stages of development of a
quantum-computing technology, as in the case of semiconductor quantum computers,
considerable effort must be made to design architectures that allow the different pieces of the
quantum computer to function together.

Quantum-computer architectures have played a key role in the development of quantum
computers. The Cirac-Zoller proposal for ion-trap QC provides an architecture for medium-
scale quantum computers with O (101) qubits. Cirac and Zoller specified explicit designs for
qubits (hyperfine levels of ions), quantum logic gates (optical resonance), quantum “wires” (the
use of a shared vibrational mode as a quantum “bus” to transfer information from one qubit to
another), as well as readout (fluorescence via cycling transitions). Most important, they showed
how all of these different components for a small- to medium-scale quantum computer could, in
principle, be put together to perform simple QC coherently. Their proposal was based on
quantum technologies that had been pioneered by experimentalists in atomic and optical
physics (Wineland, Monroe, Blatt). Because it supplied a well-thought-out design together with
explicit proposals for implementing the pieces of that design in an integrated fashion, the Cirac-
Zoller proposal was swiftly implemented by Wineland and Monroe. The Cirac-Zoller proposal
met with swift success exactly because it specified an architecture for QC.

A detailed quantum-computing architecture is a necessary proof of principle that a particular
method for performing QC has a chance of succeeding. The initial work on QC of Benioff,
Feynman, and Deutsch, in the 1980s took place in the absence of any specific ideas on how a
quantum computer might, in fact, be built. It was not until the explicit demonstration of a
universal architecture for QC using electromagnetic resonance![160] that it became clear that
quantum computers might actually be built. The techniques for using electromagnetic
resonance to perform universal QC subsequently matured in simple NMR QIPs, which were
then used to demonstrate the first quantum algorithms.

In short, a well-thought-out architecture is the key to successful quantum-computer design.
Given the importance of QC architectures, it should be no surprise that the development of such
architectures has played and continues to play a key role in the Quantum Computing Roadmap.
We can identify a set of stages in the development of QC architectures. Each stage is associated
with advances in the quantum technologies required to realize that architecture. Each stage
represents, in essence, a test that a QC architecture must pass if it is to form the basis for
constructing a viable quantum computer.

5.1 Initial Conceptual Development

In this stage, the basic concepts for meeting the DiVincenzo criteria for constructing a viable
quantum computer are developed. Potential answers are supplied to the questions of how
quantum information is to be registered (qubits), how it is to be processed (quantum logic
gates), how it is to be moved from one place to another (quantum “wires” and quantum
“buses”) how it is to be programmed in and read out (I/O devices). The initial conceptual
development can be purely theoretical, but must be fully informed by existing quantum
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technologies or quantum technologies under development. Care must be taken to insure that
the quantum-computer architecture is integrated (i.e.,!that the various components of the
quantum computer can act coherently and in concert together).

5.2 Testing the Components

In this stage, the different components of the architecture are subjected to experimental tests
and to more detailed theoretical investigations to determine whether or not they “meet spec.”
ß Qubits are prepared, manipulated, and read out.
ß Relaxation and decoherence times are measured.
ß Quantum operation and state tomography are performed.
The testing stage for the components of a quantum-computer architecture forms the basis for an
extended experimental program. As tests reveal the strengths and weaknesses of a particular
approach, the architecture is revised and refined to emphasize those strengths and to minimize
the effects of the weaknesses. (An example of such revision and refinement is Wineland’s
development of techniques for moving ions coherently from one ion trap to another, to get
around the problem of the finite size of ion traps.)

5.3 Assembling the Components into a Working Device

In this stage, the various components of the quantum-computing architecture are assembled to
construct a working QIP capable of performing QC. The ability to perform sequences of
coherent quantum manipulations and to put them together in a quantum algorithm is a strong
test of the viability of a quantum-computing architecture. To date, only a few architectures have
succeeded in performing extended sequences of coherent logic manipulations. Room-
temperature NMR QIPs, despite their intrinsic lack of scalability, have been strikingly
successful at performing demonstrations of quantum algorithms such as the Deutsch-Jozsa
algorithm, Grover’s algorithm, and Shor’s algorithm, as well as quantum error correction,
decoherence-free subspaces (DFSs), etc. The success of such demonstrations bodes well for the
ability of lower-temperature (e.g.,!optically pumpable) scalable NMR devices to perform larger-
scale quantum computations. Similarly, ion-trap quantum computers have been used to exhibit
a wide variety of techniques for coherently manipulating quantum information, including the
recent performance of a quantum algorithm on an ion-trap quantum computer. The recent
demonstration of coherent one- and two-qubit quantum logic operations on superconducting
quantum bits suggests that superconducting quantum computers may soon be capable of
performing quantum algorithms.

Actually operating a quantum computer with a particular architecture is, of course, the proof in
practice that the architecture can indeed function at a particular scale (i.e.,!number of qubits and
number of quantum logic operations).
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5.4 Scaling up the Architecture

Once a quantum-computing architecture has been developed, tested, and put into practice, it
can then be scaled up to more qubits and to more coherent quantum logic operations. As the
architecture is scaled up, stages one, two, and three above must be revisited again and again.
Often, the testing of the components and their assembly into a coherently functioning whole
will reveal a weakness of the initial conceptual scheme, which must be readdressed at the
fundamental conceptual level if the architecture is to be scaled to the next level. (Once again,
Wineland’s movable ions are an example of the recognition of a weakness and the development
of a fundamental quantum technology to correct that weakness. Similarly, the development of
methods for performing optical pumping for NMR-based systems addresses and corrects the
problem of state preparation for liquid-state NMR.)

Each increase in the number of qubits and the number of coherent operations supplies a strong
test of the scalability of a QC architecture. Each doubling of the number of qubits and number
of quantum logic operations typically brings with it a host of new quantum technological
problems, which must be addressed and solved in detail before the quantum-computing
architecture can be brought to the next level.

To optimize and test scalable quantum computers requires theoretical software that can
simulate the dynamics of algorithms involving a large number of qubits. Some pioneering work
has been done to create perturbation theories and software that enable one to calculate the
dynamics of a restricted set of logic involving a large number of qubits![161,162]. These
perturbation theories are essential for minimizing the error rates of quantum computers
involving more than 30 qubits. Related theoretical progress has been in resolving dynamical
issues for single-qubit measurement technologies based on magnetic resonance force
microscopy, scanning tunneling microscopy, optical magnetic resonance and resolving
dynamical problems for utilizing and measuring charge based qubits using single-electron
transistors and other nano-devices based on semiconductor and superconductor materials![163].

In order to meet the five- and ten-year goals of the Quantum Computing Roadmap, all four
stages of the development of QC architectures must be accomplished at least once for each
viable QC technology. In order to construct a quantum computer with eight or more qubits, a
QC architecture must undergo at least three doublings from its initial demonstration of a viable
quantum bit. Theory plays a key role in the development of QC architectures. The initial
conceptual development of such an architecture is a purely theoretical task. As the architecture
is tested, assembled, and scaled up, the development of theoretical concepts and solutions is
married ever more closely with the experimental development of specific quantum
technologies.

5.5 “Type-II” Quantum Computing

Type-II QC is a particular application of quantum simulation, in which quantum
“microprocessors” are connected via classical links. Type-II QC is useful for simulating systems
in which coherent quantum behavior is important at small scales. Systems that could potentially
benefit from the application of Type-II QC include nanofluids, quantum gases, Bose-Einstein
condensates, and plasmas at high temperatures and pressures. Unlike quantum simulation in
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general, Type-II QC does not afford an exponential speed-up over classical computation.
However, there are specific and important problems for which the exponential power of QC can
be brought to bear to simulate using a few tens of qubits an intrinsically quantum piece of a
larger system that would require a supercomputer to simulate classically. Such few-qubit
quantum microprocessors might then be hooked up using classical communication links to
perform mixed quantum/classical simulation of extended quantum systems.

6.0 Decoherence Roadblocks for Quantum Information Processing

6.1 Theoretical Terminology

Quantum information processing relies to a large extent upon the ability to ensure and control
unitary evolution of an array of coupled qubits for long periods of time. There are a number of
physical effects that act against this coherent evolution. These include interaction of the qubits
with a larger environment, unwanted or uncontrolled interactions between qubits, and
imperfections in applied unitary transformations. The latter can be either systematic or random,
and can also give rise to additional unitary errors. The term “decoherence” referred originally
explicitly to errors that arise in the wave function phase, i.e.,!to decay of off-diagonal terms in
the density matrix. This decay of phase is basis-set dependent. It also does not constitute the
only source of loss of unitarity. Today, the term decoherence is therefore more generally
understood in the field of QIP to refer to all manifestations of loss of unitarity in the qubit state
time evolution. It thereby includes
1. explicit loss of coherence,
2. dissipative or energy relaxation effects, as well as
3. leakage out of the qubit state space.
There are many theoretical languages in which decoherence may be framed and usefully
understood. Nonunitary evolution of qubit states and density matrices may be generally
regarded as resulting from entanglement of the qubit states with those of a larger quantum
system whose quantum evolution is of no intrinsic interest, such as the environment or a
measuring device![164]. This entanglement with the environment converts pure qubit states into
mixed states and results in a loss of information from the qubit system that can be quantified by
an associated increase in entropy. The resulting qubit density matrix is referred to as the
“reduced density matrix.”

ß The density matrix allows analysis of decoherence resulting from physical interactions via
formulation and solution of many different levels of master equations that have been
developed to study the dynamics of reduced density matrices![165] (and see below). These
constitute one set of languages for analysis, systematization, and quantification of
decoherence.

ß Another type of decoherence language deriving from the reduced density matrix is that of
superoperators. So named because they act on the density matrix which is itself an operator,
superoperators provide a very useful formalism for general analysis of the evolution of pure
states into mixed states. An important distinction between unitary evolution operators and
superoperators is that the former always constitute a group while the latter may sometimes
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define a dynamical semigroup that lacks an inverse. The language of superoperators is
naturally related to that of generalized measurements, allowing useful connections between
decoherence and measurements to be established. The operator sum representation
provides a compact way to obtain the superoperators that result from any specific
Hamiltonian describing the qubit system and its interaction with the environment![166].

ß Nonunitary time evolution can also be expressed as the action of quantum noise
operations![167]. These are maps that describe the introduction of errors onto qubit states.
They are written in a digitized form (error occurs with probability p) analogous to the noise
channels employed in classical information theory.

6.2 Studies of Decoherence and Ways to Overcome It

Over 2000 publications have appeared in the last four years discussing decoherence. Theoretical
studies of decoherence and its mitigation to date have tended to fall into four broad categories.
1. Physical studies of origin and magnitude of decoherence for specific candidate qubit states

in specific physical systems. Such studies generally seek to predict values of the decay times
T1 (energy dissipation or population relaxation) and T2 (dephasing) for qubit states, starting
from specific models of coupling mechanisms and of the spectral distribution of the
environment (bath), and assumptions as to Markovian or nonMarkovian dynamics of the
environment on the intrinsic time scale of the qubit states. For a recent review of these
approaches, see, e.g.,![168].

2. Mitigation of decoherence by either encoding to allow subsequent quantum error correction
(active error correction), or encoding to eliminate or suppress decoherence (passive error
correction). The former includes quantum error-correcting codes that have been developed
to correct a wide variety of errors![77,169,]. Construction of fault-tolerant protocols using
these codes has been demonstrated. The passive error-correction approach includes use of
decoherence-free subspaces and subsystems, and in its most ambitious form is represented
by topological QC (below).

3. Work on topological QC which seeks to develop naturally fault-tolerant codes may be
viewed as an ambitious alternative paradigm that would provide a powerful set of self-
correcting codes immune to many of the usual sources of decoherence if the required
Hamiltonians could be physically realized![170].

4. Suppression of decoherence by dynamical decoupling techniques. These employ external
pulse fields in a controlled manner that is specifically designed to cancel or minimize errors
by averaging them out. These methods are related to coherent averaging methods in pulsed
magnetic resonance spectroscopy, and have recently been extended from the original
techniques requiring arbitrarily strong, instantaneous control pulses (“bang-bang control”)
to realistic bounded-strength Hamiltonians (“Eulerian decoupling”)![171].

Some work has been done on combining several of the above approaches to obtain combined
error correction techniques for QC architectures that have the capability of correcting errors
deriving from very different physical sources![172]. There are a number of further directions
beyond these characterization and mitigation studies that would be valuable to pursue in the
next period of research into control of decoherence. These include:
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ß Relatively few studies have addressed the effect of decoherence on short time qubit
dynamics, i.e.,!within T2, and possibly over the time period during which control pulses
would be applied. Studies of electron spin decoherence due to hyperfine interactions with
nuclear spin are a first step in this direction, analyzing the effect of very short time
nonexponential electron spin dynamics. Measures of decoherence times based on the
density matrix norm rather than on exponential time scales for decay of matrix elements
have been proposed to quantify such short time dynamics![173]. Weakly coupled situations
where decoherence can produce nonexponential behavior that can give rise to ‘prompt’ loss
of coherence amplitude![174] or, under appropriate conditions, manifest itself solely as a
reduction in the norm of an effective system wavefunction![175], may provide a useful new
avenue to explore coherent control of intrinsically noisy qubit systems. This is particularly
relevant to qubit implementations displaying ‘reduced visibility’ or ‘reduced contrast’ Rabi
oscillations![176,177].

ß There have also been few studies of decoherence that might arise specifically during gate
switching of control fields. Some studies of pulse shaping and of compensation techniques
to stabilize control pulses against imperfections have been made![178]. We expect such
studies to become routine and to benefit from interaction between theory and experiment.

ß Complete simulations of controlled manipulations of coupled qubits with realistic
decoherence effects are rare. A few such simulations of small-scale algorithms on coupled
qubits have been made![179].

ß Despite much theoretical work on fault-tolerant protocols, complete analysis of the error
threshold for fault-tolerant QC applicable to a specific set of errors for a given physical
implementation is lacking. This represents a highly desirable direction of theoretical and
simulation research and would usefully be combined with the algorithmic simulations
described above.

ß Develop realistic microscopic description of the parameters for quantum noise operators, to
enable a unification of microscopic physical studies of decoherence with information
theoretic description of noise channels.

6.3 Physical Sources of Decoherence

The following is a summary of physical sources of decoherence that have been identified
and/or discussed for the physical implementations listed in Table 4.0-1.

1. NMR
1.1 liquid state

1.1.1 external random fields due primarily to dipoles of spins in other molecules
going past the molecule in question

1.1.2 modulation of through-space dipolar interactions between spins in the same
molecule through rotational diffusion of the molecule changing the direction
of the tensor with respect to the external field

1.1.3 modulation of the chemical shift of a spin through its dependence on the
orientation of the molecule with respect to the external field and rotational
diffusion
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1.1.4 quadrupole/electric field gradient coupling modulation (spin >!1/2)

1.2 solid state
1.2.1 chemical shift/dipole coupling dispersion in inhomogeneous samples
1.2.2 entanglement of spins through dipole coupling with their neighbors
1.2.3 spontaneous phonon emission and Raman spin/phonon interactions (the latter

dominates at high temperatures)
1.2.4 spectral diffusion due to other nuclear species and magnetic impurities

2. Trapped Ions
2.1 spontaneous emission from ions
2.2 cross talk in ion addressing due to imperfect laser focusing
2.3 mode-mode couplings due to anharmonicities of the trap
2.4 “heating” of ion motion due to stray radiofrequency fields, patch potentials, etc.
2.5 coupling of thermal vibrations into internal ion states
2.6 leakage losses into other atomic levels (i.e.,!breakdown of the two-level qubit

approximation)
2.7 ionization
2.8 inefficiencies in readout

3. Neutral Atoms
3.1 photon scattering from trapping laser fields
3.2 photon scattering from Raman laser fields during single qubit transitions
3.3 spontaneous emission from Rydberg states during a Rydberg gate operation

(including effects of black-body radiation)
3.4 background gas collision (includes qubit loss and leakage, and also standard qubit

errors)
3.5 fluctuating trap potentials
3.6 background magnetic fields
3.7 heating of atoms (i.e.,!vibrational excitation in the optical lattice potential)
3.8 scattering to atomic states outside the computational basis during collisional gates

4. Cavity QED
4.1 motional decoherence from trap fluctuations and environmental noise
4.2 motional decoherence from gate operations, noise in driving fields
4.3 photon qubit decoherence when strong coupling regime not achieved or exited

during operations
4.4 differential Stark shifts from optical trapping fields
4.5 spontaneous emission, background gas collisions, photon scattering, and other

sources of decoherence for ions and neutral atoms (see items 2 and 3 above)

5. Optical
5.1 scattering from the electromagnetic vacuum, leading to possible photon loss:
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5.1.1 loss at the source (failure of single photon source)
5.1.2 loss in processing/transit
5.1.3 loss in detection

5.2 photon addition (from failure of the source or a detector, mistaking one photon for
two photons, e.g.,!as a result of detector noise)

5.3 failure of a teleportation gate (corresponding to a detected qubit measurement error)
5.4 phase errors deriving from failure to carefully tune interferometers or from timing

errors in teleportation protocols

6. Solid State
6.1 spin based

6.1.1 spontaneous phonon emission mediated by spin-orbit coupling
6.1.2 dipolar couplings with magnetic impurities and other trapped electrons
6.1.3 hyperfine interaction with nuclear spins, giving rise to

6.1.3.1 direct electron-nuclear spin flip (may or may not include phonon
emission)

6.1.3.2 spectral diffusion whereby dipolar coupling induced fluctuation of
nuclear spins leads to a fluctuating hyperfine field acting on electron
spin

6.1.4 inhomogeneous qubit environments (magnetic fields, impurities, quantum-dot
sizes, interface strains, defects, frozen hyperfine fields)

6.1.5 gate errors due to inhomogeneities
6.1.6 current and voltage fluctuations
6.1.7 switching errors due to imperfect gate operations on qubits
6.1.8 measurement process

6.2 charge based
6.2.1 spontaneous photon emission
6.2.2 spontaneous phonon emission
6.2.3 gate voltage fluctuations (due to thermal noise, trapped charges,

electromagnetic environment)
6.2.4 electron tunneling and co-tunneling in the dots/donors

7. Superconducting
7.1 electromagnetic environment
7.2 phonons
7.3 (hot) quasiparticles
7.4 background charges
7.5 critical current noise
7.6 spurious resonances (and critical current noise)
7.7 gate voltage fluctuations
7.8 nuclear spins
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7.9 paramagnetic impurities

6.4 Decoherence Analyses

The following decoherence models and theoretical approaches have been used to analyze
decoherence in the above QC implementations.

1. NMR
1.1 liquid state

1.1.1 Hadamard product formalism
1.1.2 Redfield theory and Redfield kite structure of NMR relaxation superoperators
1.1.3 spherical harmonic tensor expansions of dipole-dipole and other interactions,

combined with Langevin analysis
1.1.4 stochastic Liouville method
1.1.5 quantum noise channels

1.2 solid state
1.2.1 the method of moments
1.2.2 spin-boson models parameterized by experiment
1.2.3 a wide variety of semiclassical models

2. Trapped Ion
2.1 standard first order perturbation theory
2.2 Weisskopf-Wigner/Markov approximation techniques for spontaneous emission

modeling
2.3 quantum Monte Carlo numerical modeling
2.4 analytic non-Markovian stochastic models for some effects (e.g., heating)

3. Neutral Atoms
3.1 wave packet simulations
3.2 stochastic Schroedinger equation (Monte Carlo wave function approach); applicable

for large scale simulations
3.3 master equation approach (including Redfield or Lindblad model ofdissipative

superoperator)
3.5 analysis of heating/decoherence rates due to trap fluctuations and collisions
3.6 analysis of gate leakage due to collisions

4. Cavity QED
4.1 perturbation theory
4.2 Weisskopf-Wigner/Markov approximation techniques for spontaneous emission

modeling
4.3 Monte Carlo wavefunction (stochastic trajectory) approach
4.4 master equations
4.5 analysis of heating rates due to trap fluctuations and gas collisions
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5. Optical
5.1 gate fidelity calculations in presence of photon loss, modeled by beamsplitter that

mixes mode with vacuum state
5.2 quantum error encodings and protocols to correct for photon loss

6. Solid State
6.1 spin-based

6.1.1 master equation in extended Bloch-Redfield description for single spin
decoherence

6.1.2 single spin decay due to phonon emission by perturbative and basis set
calculations within effective mass theory

6.1.3 many spin decay due to inhomogeneities within tight-binding description
6.1.4 method of moments for dipolar coupling to impurities
6.1.5 spin-bath theory
6.1.6 gate fidelity calculations for effects of inhomogeneities, switching errors, spin-

orbit coupling
6.1.7 master equation in Born-Markov limit for analysis of measurement efficiency

and n-shot read out
6.1.8 exact solution with Laplace transforms for effect of hyperfine coupling in fully

polarized nuclear spin field
6.1.9 perturbative analyses of hyperfine coupling effects for general (partially

polarized) nuclear spin field, evidence for non-exponential decay
6.1.10 stochastic noise theory combined with method of moments for analysis of

indirect effects of hyperfine coupling via nuclear spectral diffusion

6.2 charge-based
6.2.1 perturbation theory for photon/phonon emission
6.2.2 Bloch-Redfield theory for photon/phonon emission and for electron

tunneling/co-tunneling
6.2.3 stochastic noise theory to describe charge noise and gate fluctuations

7. Superconducting
7.1 generalized spin-Boson theory
7.2 spin-bath model
7.3 Fano-Anderson/Dutta-Horne model (for 1/f noise)
7.4 mesoscopic transport models (for read-out)
7.5 Bloch-Redfield theory
7.6 real-time path integrals
7.7 diagrammatic Keldysh technique and exact solutions for simplified Hamiltonians
7.8 quantum Monte Carlo
7.9 renormalization group
7.10 Bloch vector diffusion (stochastic differential equation)
7.11 analysis of qubit depolarization in readout
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7.0 Glossary
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